To compute $(-1729) \times(343)$ on a calculator, PRESS

$(-)$	1729
\times	343
$=$	which should show -593047.

Whole numbers are called integers. There are numbers between whole numbers which will be discussed in subsequent sections.

Figure 4 shows a portion of the real number line indicating some of the whole numbers. Any number on this line is a real number.

SUMMARY

The symbols $<$ and \leq mean less than and less than or equal to respectively. Similarly $>$ and \geq mean greater than and greater than or equal to respectively.

For adding and subtracting, remember the following rules:
Adding a negative number is the same as subtracting a positive number.
Subtracting a negative number is the same as adding a positive number.
For division and multiplication:
If both numbers have the same sign then the result is positive, otherwise it is negative.

Exercise Intro(a)
 Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

1 Fill in the most appropriate symbol $<, \leq$, $>$ or \geq in place of \square for the following:
a $17 \square-17$
b $-17 \square 17$
c $-2 \square-1$
d $-5 \square-5$

4 Calculate
a $(-6) \div(-2)$
b $(-6) \times 2$
c $(-6) \times(-2)$
d $(-6) \div 2$
e $(-6) \div(-2)$
f $6 \div(-2)$
g $(-1) \times(-2) \times(-8)$

2 Complete the correct symbol,,,$+- \div$, \times, in place of \square for the following:
a $3 \square 2=5$
b $3 \square-2=5$
c $9 \square 3=3$
d $-7 \square(-11)=77$
e $-6 \square(-5)=-1$

3 Evaluate the following:
a $7-12$
b $-3+1$
c $-3-(-1)$
d $-11+(-11)$

5 By using your calculator, or otherwise, compute the following:
a $(-343) \times 343$
b $(-343) \times(-343)$
c $(-729) \div 81$
d $\frac{(-729)}{81}$
e $(-666)-(-1945)$
f $(-2) \times(-5) \times(-7) \times(-10)$

SECTION B Indices

By the end of this section you will be able to:

- understand the terms index, power and indices
- evaluate indices
- evaluate square roots, cube roots etc.

B1 Powers and roots

? Instead of writing $\underbrace{2 \times 2 \times 2 \times 2 \times 2}$, can you remember a shorter way of writing this number? 5 copies
It can be written as 2 with superscript $5,2^{5}$. The superscript is called the index or the power, so in 2^{5} the 5 is the power or index. The plural of index is indices. We can write 7×7 as 7^{2} pronounced ' 7 squared', that is

$$
7 \times 7=7^{2}
$$

? How can we write $7 \times 7 \times 7$ in this index format?

$$
\underbrace{7 \times 7 \times 7}_{3 \text { copies }}=7^{3}
$$

7^{3} is pronounced ' 7 cubed'. We can write repetitive multiplication of the same number with an index (or power).
2. What is 9^{7} (9 to the index 7) equal to?

$$
\underbrace{9 \times 9 \times 9 \times 9 \times 9 \times 9 \times 9}_{7 \text { copies }}
$$

To evaluate this we use a calculator. PRESS

$$
9^{7}=4782969
$$

On some calculators you might have to press the \wedge key instead of the x^{y} key.
See the handbook of your calculator.
Powers of numbers can be easily evaluated on a calculator. Let's do an example.

Example 4

By using your calculator, or otherwise, compute the following:
a 3^{4}
b 88^{2}
c 20^{3}
d 20^{1}
e 7^{0}
f $(-2)^{3}$

Solution

Use the x^{y} or \wedge button on your calculator.
a $3^{4}=\underbrace{3 \times 3 \times 3 \times 3}_{4 \text { copies }}=81$

Example 4 continued

b $88^{2}=88 \times 88=7744$
c $20^{3}=20 \times 20 \times 20=8000$
d How can we write $\mathbf{2 0}^{1}$?

$$
20^{1}=20
$$

Any number to the index 1 is the number itself because it is not multiplied by itself again.
e Use your calculator to find 7^{0} :

$$
7^{0}=1
$$

There is a general result which says that: any number, apart from zero, to the index 0 gives 1.
f Odd number of negatives multiplied gives a negative number:

$$
\begin{aligned}
(-2)^{3} & =\underbrace{(-2) \times(-2)}_{=4} \times(-2) \\
& =4 \times(-2) \\
& =-8
\end{aligned}
$$

? Since $9^{2}=81$, can we somehow extract 9 from the number 81?
We move in the opposite direction, from 81 to 9 . The 9 is the square root of 81 . The square root is represented by the symbol $\sqrt{ }$. Thus we write it as

$$
\sqrt{81}=9 .
$$

? Can you find another square root of 81 or is 9 the only one?
? What is $(-9) \times(-9)=(-9)^{2}$ equal to?

$$
(-9) \times(-9)=81
$$

because minus times minus gives a plus. So -9 is also a square root of 81 .
$\sqrt{81}=9$ or -9 , sometimes written as

$$
\sqrt{81}= \pm 9
$$

where \pm is the plus or minus symbol. The square root of a positive number gives you two numbers, one positive and the other negative.
? What is $\sqrt{64}$ equal to?

$$
\sqrt{64}= \pm 8(+8 \text { or }-8)
$$

We will generally use the following notation:

$$
\begin{aligned}
\sqrt{64} & =8 \text { (only positive root) } \\
\pm \sqrt{64} & = \pm 8
\end{aligned}
$$

Most calculators will only give the positive square root. For the other square root we just place a minus sign in front.
In this Introductory chapter when we refer to roots we mean only the real roots.

We also have the cube root of a number. For example $12^{3}=1728$, so a cube root of 1728 is 12 . The symbol for the cube root is $\sqrt[3]{ }$. Hence

$$
\sqrt[3]{1728}=12
$$

There is only one real cube root.
? What is the cube root of 27 ?
A number multiplied by itself three times gives 27:

$$
(\text { number }) \times(\text { number }) \times(\text { number })=27
$$

Use a calculator. There should be a $\sqrt[3]{ }$ button on your calculator.
? What is the answer?
It's 3, thus

$$
\sqrt[3]{27}=3
$$

Remember there is only one cube root. Similarly we can define other roots, for example

$$
3^{4}=81
$$

? What is the 4 th root of $81, \sqrt[4]{81}$, equal to?

$$
\sqrt[4]{81}=3 \text { because } 3^{4}=81
$$

In this case -3 is also a root. So

$$
\pm \sqrt[4]{81}= \pm 3
$$

In general, the even root of a number results in two numbers, one positive and the other negative. For odd roots we only obtain one root.

Example 5

Calculate
a $\pm \sqrt{25}$
b $\pm \sqrt{1444}$
c $\sqrt{19600}$
d $\sqrt[3]{8}$
e $\sqrt[3]{-8}$
f $\pm \sqrt[4]{625}$

Solution
a Since $5 \times 5=25$ and $(-5) \times(-5)=25$ we have

$$
\pm \sqrt{25}= \pm 5(5 \text { or }-5)
$$

b Use the $\sqrt{ }$ button on your calculator:

$$
\pm \sqrt{1444}= \pm 38
$$

c Similarly $\sqrt{19600}=140$ (only the positive root)
d What is the cube root of $8, \sqrt[3]{8}$, equal to?
We know $2 \times 2 \times 2=8$, so $\sqrt[3]{8}=2$ (only one real root).
e Also $(-2) \times(-2) \times(-2)=-8$. Thus

$$
\sqrt[3]{-8}=-2
$$

Try this on your calculator by using the $\sqrt[3]{ }$ button.

