6 Introduction ► Arithmetic for Engineers

To compute $(-1729) \times (343)$ on a calculator, PRESS

Figure 4 shows a portion of the real number line indicating some of the whole numbers. Any number on this line is a **real number**.

SUMMARY

The symbols < and \leq mean less than and less than or equal to respectively. Similarly > and \geq mean greater than and greater than or equal to respectively.

For adding and subtracting, remember the following rules:

Adding a negative number is the same as subtracting a positive number.

Subtracting a negative number is the same as adding a positive number.

For division and multiplication:

If both numbers have the same sign then the result is positive, otherwise it is negative.

Exercise Intro(a)	Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh
1 Fill in the most appropriate symbol $<, \leq$ > or \geq in place of \Box for the following: a 17 \Box -17 b -17 \Box 17 c -2 \Box -1 d -5 \Box -5 e -2 \Box 0	, 4 Calculate a $(-6) \div (-2)$ b $(-6) \times 2$ c $(-6) \times (-2)$ d $(-6) \div 2$ e $(-6) \div (-2)$ f $6 \div (-2)$ g $(-1) \times (-2) \times (-8)$
 2 Complete the correct symbol, +, -, ÷, ×, in place of □ for the following: 	5 By using your calculator, or otherwise, compute the following:
a $3 \Box 2 = 5$ b $3 \Box -2 = 5$ c $9 \Box 3 = 3$ d $-7 \Box (-11) = 7^{2}$ e $-6 \Box (-5) = -1$	7 a $(-343) \times 343$ b $(-343) \times (-343)$ c $(-729) \div 81$
 3 Evaluate the following: a 7 -12 b -3 + 1 c -3 - (-1) d -11 + (-11) e -11 - (-11) 	d $\frac{(-729)}{81}$ e $(-666) - (-1945)$ f $(-2) \times (-5) \times (-7) \times (-10)$

SECTION B Indices

By the end of this section you will be able to:

- ▶ understand the terms **index**, **power** and **indices**
- evaluate indices
- evaluate square roots, cube roots etc.

B1 Powers and roots

Instead of writing $\underbrace{2 \times 2 \times 2 \times 2 \times 2}_{5 \text{ copies}}$, can you remember a shorter way of writing this number?

It can be written as 2 with superscript 5, 2^5 . The superscript is called the index or the power, so in 2^5 the 5 is the **power** or **index**. The plural of index is **indices**. We can write 7×7 as 7^2 pronounced '7 squared', that is

$$7 \times 7 = 7^2$$

How can we write 7 × 7 × 7 in this index format?

$$\underbrace{7 \times 7 \times 7}_{3 \text{ copies}} = 7^3$$

7³ is pronounced '7 cubed'. We can write repetitive multiplication of the same number with an index (or power).

What is 9⁷ (9 to the index 7) equal to?

$$\underbrace{9 \times 9 \times 9 \times 9 \times 9 \times 9 \times 9}_{7 \text{ copies}} 9$$

To evaluate this we use a calculator. PRESS

9 x^{y} 7 = , which should show 4782969. Therefore

 $9^7 = 4782969$

On some calculators you might have to press the \bigwedge key instead of the x^{γ} key.

See the handbook of your calculator.

Powers of numbers can be easily evaluated on a calculator. Let's do an example.

Example 4

By using your calculator, or otherwise, compute the following:

a 3^4 **b** 88^2 **c** 20^3 **d** 20^1 **e** 7^0 **f** $(-2)^3$

Solution

Use the x^{y} or \wedge button on your calculator.

a
$$3^4 = \underbrace{3 \times 3 \times 3 \times 3}_{4 \text{ copies}} = 81$$

8 Introduction ► Arithmetic for Engineers

Example 4 continued

b $88^2 = 88 \times 88 = 7744$

c $20^3 = 20 \times 20 \times 20 = 8000$

d How can we write 20^{12} ?

 $20^1 = 20$

Any number to the index 1 is the number itself because it is **not** multiplied by itself again.

e Use your calculator to find 7⁰:

$$7^0 = 1$$

There is a general result which says that: any number, apart from zero, to the index 0 gives 1.

f Odd number of negatives multiplied gives a negative number:

$$(-2)^3 = \underbrace{(-2) \times (-2)}_{\stackrel{\cong 4}{=} 4 \times (-2)} \times (-2)$$
$$= -8$$

Since $9^2 = 81$, can we somehow extract 9 from the number 81?

We move in the opposite direction, from 81 to 9. The 9 is the square root of 81. The square root is represented by the symbol $\sqrt{1}$. Thus we write it as

 $\sqrt{81} = 9$

Can you find another square root of 81 or is 9 the only one?

What is $(-9) \times (-9) = (-9)^2$ equal to?

 $(-9) \times (-9) = 81$

because minus times minus gives a plus. So -9 is also a square root of 81. $\sqrt{81} = 9$ or -9, sometimes written as

 $\sqrt{81} = +9$

where \pm is the plus or minus symbol. The square root of a positive number gives you two numbers, one positive and the other negative.

What is $\sqrt{64}$ equal to?

 $\sqrt{64} = \pm 8 (+8 \text{ or } -8)$

We will generally use the following notation:

 $\sqrt{64} = 8$ (only positive root) $\pm \sqrt{64} = \pm 8$

Most calculators will only give the positive square root. For the other square root we just place a minus sign in front.

In this Introductory chapter when we refer to roots we mean **only** the **real** roots.

2

We also have the cube root of a number. For example $12^3 = 1728$, so a cube root of 1728 is 12. The symbol for the cube root is $\sqrt[3]{}$. Hence

 $\sqrt[3]{1728} = 12$

There is **only one** real cube root.

What is the cube root of 27?

A number multiplied by itself three times gives 27:

 $(number) \times (number) \times (number) = 27$

Use a calculator. There should be a $\sqrt[3]{}$ button on your calculator.

What is the answer?

It's 3, thus

?

$$\sqrt[3]{27} = 3$$

Remember there is only one cube root. Similarly we can define other roots, for example

$$3^4 = 81$$

What is the 4th root of 81, $\sqrt[4]{81}$, equal to?

 $\sqrt[4]{81} = 3$ because $3^4 = 81$

In this case -3 is also a root. So

 $\pm \sqrt[4]{81} = \pm 3$

In general, the **even** root of a number results in two **numbers**, one positive and the other negative. For **odd** roots we only obtain **one** root.

Example 5 Calculate **a** $\pm\sqrt{25}$ **b** $\pm\sqrt{1444}$ **c** $\sqrt{19600}$ **d** $\sqrt[3]{8}$ **e** $\sqrt[3]{-8}$ **f** $\pm\sqrt[4]{625}$ Solution **a** Since 5 × 5 = 25 and (-5) × (-5) = 25 we have $\pm\sqrt{25} = \pm 5$ (5 or -5) **b** Use the $\sqrt{}$ button on your calculator: $\pm\sqrt{1444} = \pm 38$ **c** Similarly $\sqrt{19600} = 140$ (only the positive root) **d** What is the cube root of 8, $\sqrt[3]{8}$, equal to? We know 2 × 2 × 2 = 8, so $\sqrt[3]{8} = 2$ (only one real root). **e** Also (-2) × (-2) × (-2) = -8. Thus $\sqrt[3]{-8} = -2$ Try this on your calculator by using the $\sqrt[3]{}$ button.