Contents

Note to the Reader	vii
Preface	ix
INTRODUCTION Arithmetic for Engineers	1
► Whole numbers	2
► Indices	7
▶ Numbers	12
► Fractions	16
 Arithmetic of fractions 	18
► Decimals	24
Powers of 10	28
► Conversion	38
 Arithmetical operations 	40
► Percentages	43
► Ratios	48
1 Engineering Formulae	52
 Substitution and transposition 	53
 Transposing engineering formulae 	59
► Indices	66
Dimensional analysis	69
 Expansion of brackets 	73
 Factorization 	78
 Quadratic equations 	86
 Simultaneous equations 	90
2 Visualizing Engineering Formulae	99
► Graphs	100
 Applications of graphs 	105
 Quadratic graphs 	109
Quadratics revisited	114
 Further graphs 	120
 Binomial expansion 	127
3 Functions in Engineering	133
 Concepts of functions 	134
Inverse functions	138
 Graphs of functions 	142

	Combinations of functions	150
	Limits of functions	156
	Modulus function	163
4	Trigonometry and Waveforms	167
▶	Trigonometric functions	168
	Angles and graphs	177
	Trigonometric equations	181
	Trigonometric rules	187
	Radians	192
	Wave theory	195
	Trigonometric identities	203
	Applications of identities	209
	Conversion	213
5	Logarithmic, Exponential and Hyperbolic Functions	223
	Indices revisited	224
	The exponential function	227
	The logarithmic function	233
	Applications of logarithms	241
	Hyperbolic functions	246
6	Differentiation	257
	The derivative	258
	Derivatives of functions	265
	Chain rule revisited	274
	Product and quotient rules	280
	Higher derivatives	286
	Parametric differentiation	291
	Implicit and logarithmic differentiation	298
7	Engineering Applications of Differentiation	307
	Curve sketching	308
	Optimization problems	320
	First derivative test	326
	Applications to kinematics	330
	Tangents and normals	335
	Series expansion	338
	Binomial revisited	346
	Numerical solution of equations	351
8	Integration	359
	Integrals	360
	Integration by substitution	368
	Definite integrals	375
	Integration by parts	388

	Algebraic fractions Integration of algebraic fractions Integration by substitution revisited` Trigonometric techniques for integration	396 405 410 414
9	Engineering Applications of Integration Trapezium rule	425 426
	Further numerical integration	434
	Engineering applications	442
	Applications in mechanics	452
	Miscellaneous applications of integration	456
	Complex Numbers	463
	Arithmetic of complex numbers	464
	Representation of complex numbers Multiplication and division in polar form	475 482
	Powers and roots of complex numbers	488
	Exponential form of complex numbers	497
11	Matrices	507
	Manipulation of matrices	508
	Applications	516
	3 × 3 matrices	522
	Gaussian elimination	534 541
	Linear equations Eigenvalues and eigenvectors	548
	Applications in heat transfer	556
12	Vectors	567
	Vector representation	568
	Vectors in Cartesian co-ordinates	576
	Three-dimensional vectors	581
	Scalar products	586 593
•	Vector products	090
13	First Order Differential Equations	601
	Solving differential equations	602
	Using the integrating factor	611
	Applications to electrical principles	616
	Further engineering applications	623
	Euler's numerical method	630
	Improved Euler's method	638
	Fourth order Runge–Kutta	645

14	Second Order Linear Differential	
	Equations	656
	Homogeneous differential equations	657
	Engineering applications	662
	Non-homogeneous (inhomogeneous) differential equations	670
	Particular solutions	683
15	Partial Differentiation	694
	Partial derivatives	695
	Applications	706
	Optimization	714
16	Probability and Statistics	726
	Data representation	727
	Data summaries	734
	Probability rules	745
	Permutations and combinations	756
	Binomial distribution	761
	Properties of discrete random variables	769
	Applications of continuous random variables	777
	Normal distribution	786
So	lutions	797
Ар	pendix: Standard Normal Distribution Table	821
	dex	822

CHAPTER 1 Engineering Formulae

SECTION A Substitution and transposition 53

- Evaluate formulae
- Solve equations

SECTION B Transposing engineering formulae 59

▶ Transpose and evaluate formulae

SECTION C Indices 66

▶ Use the laws of indices to simplify expressions

SECTION D Dimensional analysis 69

Check equations which involve physical quantities

SECTION E Expansion of brackets 73

Expand brackets

SECTION F Factorization 78

- ► Factorize simple expressions
- ► Factorize quadratic expressions

SECTION G Quadratic equations 86

- Solve quadratic equations by factorization
- Solve quadratic equations by formula

SECTION H Simultaneous equations 90

► Solve linear simultaneous equations

In this chapter we look at the applications of basic algebra to engineering problems.

The word *algebra* comes from the Arabic '*al-jabr*' which occurs in Al-Khwarizmi's book '*Hisab al-jabr w'al-muqabala*' written in the early ninth century. *Al-jabr* means restoration (or transpose to remove the negative quantities of an equation, e.g. 3x + 1 = 8 - 4x goes to 7x + 1 = 8). Al-Khwarizmi (780–850 AD) was born in Khwarizm, now called Khiva, a town located in Uzbekistan (a former Soviet republic which became independent in 1991).

SECTION A Substitution and transposition

By the end of this section you will be able to:

- evaluate formulae using BROIDMAS
- solve equations
- ▶ transpose formulae

A1 Evaluating formulae

A formula is a general rule or law of mathematics. The plural of formula is formulae.

In evaluating formulae, the mnemonic BROIDMAS gives the order of operation (see Introductory chapter):

<u>B</u> rackets	} First
<u>RO</u> ots <u>I</u> ndices	} Second
<u>D</u> ivision <u>M</u> ultiplication	} Third
<u>A</u> ddition Subtraction	} Last

It's imperative that you understand BROIDMAS because it tells us the rules of algebra and is used for evaluating and simplifying algebraic expressions. Moreover it can be useful for typing in an expression into a computer algebra package or a calculator.

In algebra, letters or symbols are used to represent numbers. These letters or symbols may be **constants**, that is fixed, or **variables**, which means they can take up various values.

No space between letters represents multiplication, for example

 $ab = a \times b = a \cdot b$

So if a = 3 and b = 7 then $ab = 3 \times 7 = 21$. To evaluate a formula we substitute the given

numbers in place of letters and then apply BROIDMAS to evaluate the arithmetical expression as in the Introductory chapter.

For example, evaluate $a(b + c) + \frac{c(a + b)^2}{b}$ where a = 2, b = 3 and c = 5:

$$2(3+5) + \frac{5(2+3)^2}{3} = (2 \times 8) + \left(\frac{5 \times 5^2}{3}\right)$$
$$= 16 + \left(\frac{5 \times 25}{3}\right)$$
$$= 16 + \frac{125}{3}$$
$$= 57\frac{2}{3}$$

Example 1

Pythagoras theorem gives the length of the longest side, c, in terms of the other two sides of a right-angled triangle, a and b, as

$$c = \sqrt{a^2 + b^2}$$

Evaluate *c* for a = 5 and b = 12.

Solution

Substituting a = 5 and b = 12 into $c = \sqrt{a^2 + b^2}$ gives $c = \sqrt{5^2 + 12^2}$ $= \sqrt{25 + 144}$ $= \sqrt{169} = 13$ Hence c = 13.

A2 Transposition of formulae

In the formula v = u + at, we say v is the **subject** of the formula. If we want to make t the subject of the formula then we need to change the form to

t =

This process of changing the subject is called **transposition** of formulae.

When transposing we can

 add, subtract, multiply or divide by the same quantities on both sides of the formula (though we cannot divide by zero)

A3 Transposition applied to equations

An **equation** is a mathematical statement that says two expressions are equal. For example

x - 3 = 7

is an equation where x is a unknown variable. To solve this equation means we need to find the value (or values) of *x* so that

Left-Hand Side = Right-Hand Side

Hence we need to make x the subject of x - 3 = 7. That is we need to remove the 3 on the Left-Hand Side. How?

Add 3. We need to add 3 to both sides because we have to maintain the **balance** of the equation:

$$x - 3 + 3 = 7 + 3$$
$$x - 0 = 10$$
$$x = 10$$

In this case x = 10 is a **solution**, or a **root**, of the above equation. The process of finding the value of x is the same as transposition of formulae. Let's try some examples in the field of electrical principles and mechanics.

孕 Example 2 *electrical principles*

> If the voltage, V, across a resistor $R = 100 \Omega$ is 10 volts, find the current I through the resistor, given that V = IR.

Solution

?

?

Substituting V = 10 and R = 100 into V = IR gives

10 = 100I

What are we trying to find?

The value of *I*. How do we find *I*?

Divide both sides by 100:

$$\frac{100I}{100} = \frac{10}{100}$$

Cancelling the 100's on the Left-Hand Side:

$$I = \frac{10}{100} = 0.1 \text{ amp (A)}$$

The unit for current is amp and will generally be denoted by A.

As a check you can substitute I = 0.1 into 10 = 100I, thus $10 = 100 \times 0.1$.

Example 3 *mechanics*

A vehicle's speed, v, is given by

v = 14 + 5t

where *t* is time. Find the time taken in seconds to reach a speed of 23 m/s.

Solution

Substituting v = 23 gives

14 + 5t = 23

We need to find *t*. How?

Subtract 14 from both sides:

5t = 23 - 14 = 9

? | H

?

How do we remove the 5 from the Left-Hand Side?

Divide both sides by 5:

$$\frac{5t}{5} = \frac{9}{5}$$

Cancelling 5's on the Left-Hand Side gives:

$$t = \frac{9}{5} = 1.8$$
 s

We use SI units throughout the book – see the Introductory chapter. For example, velocity is given in m/s, acceleration in m/s^2 , time in s, etc.

The above equations, 14 + 5t = 23 and 100I = 10, are examples of **linear equations**.

A4 Transposition applied to engineering formula

Algebraic expressions can be simplified by adding, subtracting or cancelling like terms, for example

$$x + x = 2x$$
, $x - x = 0$, $x + 5x = 6x$ and $\frac{x}{x} = 1$ [provided $x \neq 0$]

We can **only** add and subtract like terms. We cannot simplify the following:

$$x + y = x + y, x - y = x - y, x + 5y = x + 5y$$
 and $\frac{x}{y} = \frac{x}{y}$

The procedure in applying transposition to formulae is very similar to that used in solving equations. Let's try some engineering examples.

-

 $\widehat{}$

In Example 4, how do we know that we need to divide both sides by *I*?

The subject that we want to obtain is *V*.

What does the formula P = IV do to V?

It is multiplied by *I*.

We want to remove the *I* and find *V* on its own. How can we remove *I*?

We can divide by *I*.

One way of obtaining the subject in many cases is to see what the formula does to the subject and then do the opposite on the other side. In **Example 4** the subject (V) is

multiplied by *I* so we need to divide the other side by *I*, thus obtaining $V = \frac{P}{I}$.

Example 5 *mechanics*

The velocity, v, of an object with an initial velocity u and constant acceleration a after time t is given by

v = u + at

Transpose to make *t* the subject of the formula.

Solution

A

2

?

Example 5 *continued*

We need to remove the *u* first. How?

Subtract *u* from both sides:

v - u = (u + at) - u $= \underbrace{u - u}_{t} + at$ v - u = at

How can we obtain *t* from v - u = at?

Divide both sides by *a*:

$$\frac{v-u}{a} = \frac{at}{a}$$

The a's on the Right-Hand Side cancel out to give

$$t = \frac{v - u}{a}$$

We will assume that the variable we are dividing by is **not** zero because we cannot divide by zero. So in **Example 5**, *a* is not zero.

SUMMARY

In evaluating the formula we use the mnemonic BROIDMAS: <u>Brackets</u>, <u>RO</u>ots, <u>Indices</u>, <u>D</u>ivision, <u>M</u>ultiplication, <u>A</u>ddition, <u>S</u>ubtraction.

We can transpose a formula to make a certain variable the subject of the formula. Transposing involves arithmetical operations carried out on both sides of the formula. We use transposition to solve equations.

Exercise 1(a)

1 Given that

$$c = \sqrt{a^2 + b^2}$$

evaluate *c* for a = 24 and b = 7.

- **2** [electrical principles] If the voltage, *V*, across a resistor $R = 1000 \Omega$ is 15 V, then find the current *I* given that V = IR.
- **3** [thermodynamics] A gas is expanded from an initial pressure P_1 and volume V_1 of 5×10^6 N/m² and 2×10^{-4} m³

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

- respectively, to a final pressure $P_2 = 2 \times 10^7 \text{ N/m}^2$. Find the new volume V_2 given that $P_1V_1 = P_2V_2$.
- 4 E [thermodynamics] A gas has pressure $P = 5.6 \times 10^5 \text{ N/m}^2$, volume $V = 0.015 \text{ m}^3$ and is at a temperature T = 312 K. If there are n = 34.6 mole of gas, determine the mass, *m*, given that

PV = nmRT

where R = 8.31 J/(K mole) (*R* is called the universal or molar gas constant).

Exercise 1(a) continued

5 [*mechanics*] The distance, *s*, travelled in time *t* is related by

$$s = ut + \frac{1}{2}at^2$$

where *u* is the initial velocity and *a* is constant acceleration. Determine *a*, given that s = 30 m, u = 2 m/s and t = 5 s.

6 [electrical principles] The resistance,*R*, of a wire at <math>t °C is given by

$$R = R_0(1 + \alpha t)$$

where R_0 is the resistance at 0 °C and α is the temperature coefficient of resistance. Determine α , given that $R_0 = 33 \Omega$, $R = 35 \Omega$ and t = 89 °C. (The units of α are / °C.)

7 Event [electrical principles] A battery with e.m.f. E = 12 V and an internal resistance r = 1 Ω is connected across a resistor R = 20 Ω . Find the voltage V across *R*, given that

$$E = \frac{V(R+r)}{R}$$

8 [mechanics] The velocity, *v*, of an object is given by

v = u + at

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

where *u* is the initial velocity, *a* is constant acceleration and *t* is time. Transpose to make

- i *u* the subject
- ii *a* the subject.
- **9** [*electrical principles*] Ohm's law states that

$$I = \frac{V}{R}$$

where *I* is current, *V* is voltage and *R* is resistance. Transpose to make *R* the subject of the formula.

10 [*thermodynamics*] The characteristic equation of a perfect gas is given by

$$PV = mRT$$

(P = pressure, V = volume,)

- R = gas constant, m = mass and
- T = temperature). Make T the subject.
- **11** [*mechanics*] The slip, *S* (%), of a vehicle is given by

$$S = \left(1 - \frac{r\omega}{v}\right) \times 100$$

where r = radius of tyre, $\omega =$ angular velocity and v = velocity. Make ω the subject of the formula.

SECTION B Transposing engineering formulae

By the end of this section you will be able to:

- ▶ transpose complicated formulae
- evaluate formulae by substitution

Transposition and substitution are two very important concepts of algebra and it is critical that you fully understand the processes involved because the remaining chapters in this book rely upon these techniques.

This section is more difficult than Section A in the sense that the formulae involve roots and inverse.

B1 Formulae involving roots

As discussed in the Introductory chapter, the square root and the *n*th root are denoted by $\sqrt{}$ and $\sqrt[n]{}$ respectively. We can write these as

1.1

 $\sqrt{a} = a^{1/2}$ [square root] $\sqrt[n]{a} = a^{1/n}$ [*n*th root]

For example

 $\sqrt{49} = 7$ (positive square root)

 $\sqrt[3]{8} = 2$ (because $2 \times 2 \times 2 = 8$ or $2^3 = 8$; $\sqrt[3]{4}$ denotes the cube root)

What is $8^{1/3}$ and $256^{1/4}$ equal to?

$$8^{1/3} = \sqrt[3]{8} = 2$$

$$256^{1/4} = 4$$
 (because $4 \times 4 \times 4 \times 4 = 256$)

Now let's take a look at roots where letters represent variables.

We also have:

$$\sqrt{a^2} = \left(\sqrt{a}\right)^2 = a$$
$$\sqrt[n]{a^n} = \left(\sqrt[n]{a}\right)^n = a$$

(These can be shown by using the rules of indices which are explored in the next section.)

X.

?

?

?

2

Example 6 aerodynamics

The lift force, *L*, on an aircraft is given by

$$L = \frac{1}{2}\rho v^2 A C$$

where ρ is density, v is speed, A is area and C is lift coefficient. Make v the subject of the formula.

Solution

How can we get v = - - ?

We can first find v^2 and then take the square root of both sides.

How do we get $v^2 = - - - ?$

First we need to remove the $\frac{1}{2}$. How?

Multiply both sides by 2: $2L = \rho v^2 A C$

Next we need to remove ρAC from the Right-Hand Side. How?

Divide through by ρAC :

$$\frac{2L}{\rho AC} = v^2$$

In the last line where we say 'by **1.1**' means the result follows by this reference quoted earlier and repeated at the bottom of this page.

We adopt this approach of quoting a reference number throughout the book and the formula itself will either be in the main text or on the bottom of the page below a horizontal line so that you do not need to flick over pages to find the reference.

Example 7 materials

The second moment of area, *I*, of a rectangle of height *h* and breadth *b* is given by

$$I = \frac{1}{12}bh^3$$

Make h the subject of the formula.

Solution

First we need to remove $\frac{1}{12}$ from the Right-Hand Side. How?

Multiply both sides by 12: $12I = bh^3$

?

?

By what means can we find *h*?

We can initially obtain h^3 and then find *h*. So divide both sides by *b*:

$$\frac{12I}{b} = h^3$$

and now take the cube root, $(\sqrt[3]{})$, of both sides:

$$\sqrt[3]{\frac{12I}{b}} = h \text{ (because } \sqrt[3]{h^3} = h \text{)}$$

or

$$h = \left(\frac{12I}{b}\right)^{1/3}$$

As discussed in the Introductory chapter, in many engineering examples it is sufficient to give your final answer to the smallest number of significant figures consistent with the data. The intermediate working has to be one more decimal point (d.p.) or significant figure (s.f.) than is needed. Thus in order to give your final answer to 1 d.p. (or 1 s.f.) you need to work to 2 d.p. (or 2 s.f.).

In the next example we use substitution and transposition of formulae to evaluate the capacitance, *C*. It is more difficult than the above examples.

Example 8 *electronics*

The impedance, Z, of a circuit containing a resistor R, capacitor C and inductor L is given by

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

where $X_L = 2\pi f L$ and $X_C = \frac{1}{2\pi f C}$ (*f* represents frequency).

Determine *C* if $R = 100 \Omega$, $Z = 104 \Omega$, L = 0.1 henry and f = 50 Hz.

Solution

Substituting f = 50 and L = 0.1 into $X_L = 2\pi f L$ gives

 $X_L = 2\pi \times 50 \times 0.1 = 10\pi$

Substituting $X_L = 10\pi$, Z = 104 and R = 100 into the given formula, $Z = \sqrt{R^2 + (X_L - X_C)^2}$, results in

 $104 = \sqrt{100^2 + (10\pi - X_c)^2}$

What are we trying to find?

We need to determine *C* but first we find X_C and then obtain *C*.

Squaring both sides gives

 $104^2 = 100^2 + (10\pi - X_C)^2$

Transposing

$$104^2 - 100^2 = 816 = (10\pi - X_c)^2$$

We have

 $(10\pi - X_C)^2 = 816$

Taking square root of both sides:

 $10\pi - X_C = \sqrt{816} = 28.566$ Hence $X_C = 10\pi - 28.566 = 2.850$ Since $X_C = \frac{1}{2}$ we have

$$\frac{2\pi fC}{2\pi fC} = 2.850$$

Ď

Example 8 *continued*

Transposing

Ď

$$C = \frac{1}{2\pi f \times 2.85}$$
$$= \frac{1}{2\pi \times 50 \times 2.85} = 0.0011$$
substituting
f = 50

Hence C = 0.0011 farad or 1.1×10^{-3} farad = 1.1 millifarad (mF). Remember that the prefix milli, m, represents 10^{-3} .

B2 Formulae involving the inverse

The multiplicative inverse of $x (\neq 0)$ is denoted by x^{-1} and defined as

1.3
$$x^{-1} = \frac{1}{x}(x^{-1} = 1 \div x)$$

Example 9

Show that

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \quad (a \neq 0, b \neq 0)$$

Solution

We have

$$\left(\frac{a}{b}\right)^{-1} = \frac{1}{\left(\frac{a}{b}\right)} \quad \left[by \ (1.3) \text{ with } x = \frac{a}{b}\right]$$
$$= 1 \div \frac{a}{b}$$
$$= 1 \times \frac{b}{a} = \frac{b}{a}$$

Remember $1 \div \frac{a}{b} = 1 \times \frac{b}{a}$ because when we divide fractions we turn the second fraction upside down and multiply.

We give this important result a reference number:

$$1.4 \qquad \left(\frac{a}{b}\right)^{-1} = \frac{1}{a}$$

We also have $\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$, but more of this in the next section.

Су

2

A gas in a cylinder in state 1 with pressure P_1 , temperature T_1 and volume V_1 expands to state 2 with pressure P_2 , temperature T_2 and volume V_2 . A formula relating these variables is given by $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$. Make T_1 the subject of the formula.

Solution

From $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ we need $T_1 = -$ – . Taking the inverse, ()⁻¹, of both sides gives $\left(\frac{P_1V_1}{T_1}\right)^{-1} = \left(\frac{P_2V_2}{T_2}\right)^{-1}$ $\frac{T_1}{P_1V_1} = \frac{T_2}{P_2V_2}$ [by 1.4] How can we find $T_1 = -$ – –? Multiply both sides by P_1V_1 :

$$T_{1} = \frac{P_{1}V_{1}T_{2}}{P_{2}V_{2}}$$

SUMMARY

The square root, $\sqrt{}$, and the *n*th root, $\sqrt[n]{}$, are defined as

1.1
$$\sqrt{a} = a^{1/2}$$

$$1.2 \qquad \sqrt[n]{a} = a^{1/n}$$

The inverse of $x \ (\neq 0)$ is defined as

1.3
$$x^{-1} = \frac{1}{x}$$

1.4 $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} (a \neq 0, b \neq 0)$

It is well worth spending some time learning these, **1.1** to **1.4**, because they are used throughout the book.

Exercise 1(b)

1 [clectrical principles] The power *P* dissipated in a resistor of resistance *R* is given by

$$P = \frac{V^2}{R} \quad [V \text{ is voltage}]$$

Make V the subject of the formula.

2 [acoustics] The speed, *c*, of sound in air is given by

$$c = \sqrt{\frac{\gamma P}{\rho}}$$

where γ is the specific heat ratio, *P* is the pressure and ρ is the density. Make *P* the subject of the formula.

3 [*mechanics*] The airflow over a vehicle causes drag *D*, which is given by

$$D = \frac{1}{2}\rho C v^2 A$$

where ρ is density, *C* is drag coefficient, ν is velocity and *A* is the frontal area of the vehicle. Make *A* the subject of the formula.

4 $\frac{P_{02}}{R_{11}}$ [*electrical principles*] Evaluate the total resistance, *R*, in a circuit containing two resistors in parallel, $R_1 = 100 \Omega$ and $R_2 = 270 \Omega$, where

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

(Ω is the SI unit ohm used to measure electrical resistance).

5 [*mechanics*] The time, *T*, taken for a pendulum to make a complete swing is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

where l = length of pendulum and $g = 9.81 \text{ m/s}^2$. Determine *l*, if T = 0.5 s. Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

6 [*electronics*] The impedance, *Z*, of a circuit containing a resistor *R*, capacitor *C* and inductor *L* is given by

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

where $X_L = 2\pi f L$ and $X_C = \frac{1}{2\pi f C}$

(*f* represents frequency).

Determine *C* if $R = 50 \Omega$, $Z = 100 \Omega$, L = 1 henry and f = 50 Hz.

7 [aerodynamics] The power, P, required to drive an air screw of diameter D is given by

 $P = 2\pi k \rho n^3 D^5$

 $(k = \text{torque coefficient}, \rho = \text{density}, n = \text{number of revolutions per second}).$ Make *D* the subject of the formula.

8 $\boxed{\textcircled{electronics}}$ A system with feedback β and gain *A* has an input voltage v_{in} given by

$$v_{\rm in} = \left(\frac{1}{A} - \beta\right) v_{\rm out}$$

$$(v_{\text{out}} = \text{output voltage})$$
. Show that

$$\frac{v_{\rm out}}{v_{\rm in}} = \frac{A}{1 - A\beta}$$

9 *[materials]* A cylinder of radius *r* is subject to a torque *T* at each end, which causes it to twist. The shear stress τ is given by

$$\tau = \frac{T}{\frac{1}{2}\pi r^3}$$

Make *r* the subject of the formula.

10 The following formulae occur in various engineering fields. Make the letter in the square brackets the subject of the formula.

a
$$V = \frac{ER}{R+r}$$
 [r]

b
$$v^2 = u^2 + 2as$$
 [u]

$$\mathbf{c} \quad v = \left(\frac{K+4a/3}{\rho}\right)^{1/2} \qquad [K]$$

Exercise 1(b) continued		Solutions at end of book. Complete solution at www.palgrave.com/science/engineering/s	
d $\eta = \frac{\pi P r^4 t}{8 \nu L}$	[<i>r</i>]	g $W = \frac{P_1 V_1 - P_2 V_2}{n-1}$	$[V_1]$
e $T = 2\pi \sqrt{\frac{l}{g}}$	[<i>l</i>]	h $PV^n = C$	[V]
$\mathbf{f} RT = \left(P + \frac{a}{V^2}\right)(V - b)$	[P]	$\mathbf{i} \ f = C \frac{W}{D} \sqrt{\frac{h}{u}}$	[<i>u</i>]

SECTION C Indices

By the end of this section you will be able to:

- use the laws of indices to simplify expressions
- use the laws of indices in applications of thermodynamics

Do you remember what 3⁵ represents?

It is $\underbrace{3 \times 3 \times 3 \times 3 \times 3}_{\text{5 copies}}$ which is equal to 243.

The 5 in 3^5 is called the **index** or the **power**. The plural of index is **indices**. In this section we will predominantly apply the rules of indices to letters rather than numbers.

The topic of indices is very important for engineers but many students do find this a difficult topic – invariably because they don't know the rules well enough.

C1 Some rules of indices

We have already stated some rules of indices in the last section, 1.1 to 1.4. Other important rules of indices are

1.5	$a^m a^n = a^{m+n}$
1.6	$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n} (a \neq 0)$
1.7	$(a^m)^n = a^{m \times n}$
1.8	$a^0 = 1 (a \neq 0)$
1.9	$a^1 = a$
1.10	$a^{-n} = \frac{1}{a^n} (a \neq 0)$
1.11	$(ab)^n = a^n b^n$
1.12	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} (b \neq 0)$

Example 11 Simplify the following: c $\frac{x}{\sqrt{x}}$ d $\left(\sqrt[3]{x}\right)^2 \sqrt[3]{x}$ **b** $\frac{x^3}{x^2}$ **a** $x^3 x^2$ Solution Using the above rules we have **a** $x^3 x^2 = x^{3+2} = x^5$ by 1.5 **b** $\frac{x^3}{x^2} \equiv x^{3-2} = x^1 \equiv x$ by **1.6** by **1.9 c** $\frac{x}{\sqrt{x}} = \frac{x^1}{x^{1/2}} = \underbrace{x^{1-1/2}}_{\text{by 1.6}}$ $= x^{1/2} = \sqrt{x}$ [by 1.1] **d** $(\sqrt[3]{x})^2 \sqrt[3]{x} = (x^{1/3})^2 (x^{1/3})$ $= x^{2/3} x^{1/3} = x^{(2/3) + (1/3)} = x^1 = x^1$ by 1.7

As **Example 11** shows, the rules of indices, 1.1 to 1.12, can be used to simplify algebraic expressions. We can also apply these to show results that we have already used, such as $\sqrt{a^2} = a$:

$$\sqrt{a^2} = (a^2)^{1/2} = a^{2 \times 1/2} = a^1 = a$$

Similarly we have

$$\sqrt[n]{a^n} = (a^n)^{1/n} = a^{n \times 1/n} = a^1 = a^1$$

Note that if $x^n = a$ then taking the *n*th root of both sides gives

$$(x^n)^{1/n} = a^{1/n}$$

Thus we have

$$\dot{x} = a^{1/n}$$

We call this (†) because we will refer to it later on.

Let's try an engineering example.

1.1 $\sqrt{x} = x^{1/2}$ 1.2 $\sqrt[n]{a} = a^{1/n}$ 1.5 $a^m a^n = a^{m+n}$ 1.6 $\frac{a^m}{a^n} = a^{m-n}$ 1.7 $(a^m)^n = a^{m \times n}$ 1.9 $a^1 = a$ С<u>к</u>

Example 12 thermodynamics

A gas in a cylinder is compressed according to the law

 $P_1 V_1^{1.5} = P_2 V_2^{1.5}$

where *P* is pressure and *V* is volume. If the gas has an initial volume of V_1 =0.16 m³ and pressure of P_1 =140 × 10³ N/m² and is then compressed to a pressure of P_2 =750 × 10³ N/m², find the new volume, V_2 .

Solution

Substituting $P_1 = 140 \times 10^3$, $P_2 = 750 \times 10^3$ and $V_1 = 0.16$ into

$$P_1 V_1^{1.5} = P_2 V_2^{1.5}$$

gives

$$(140 \times 10^{3}) \times (0.16)^{1.5} = (750 \times 10^{3}) \times V_{2}^{1.5}$$
$$V_{2}^{1.5} = \frac{(140 \times 10^{3}) \times (0.16)^{1.5}}{750 \times 10^{3}} \quad \text{[Dividing by } 750 \times 10^{3}\text{]}$$
$$= \frac{140 \times (0.16)^{1.5}}{750} \qquad \text{[Cancelling } 10^{3} \text{'s]}$$

 $V_2^{1.5} = 0.0119$

Applying the index 1/1.5 to both sides and using **†** yields:

$$V_2 = (0.0119)^{1/1.5} = 0.052 \text{ m}^3 (2 \text{ s.f.})$$

SUMMARY

We can use the rules of indices, 1.1 to 1.12, to simplify algebraic expressions and in engineering applications such as those in thermodynamics.

Exercise 1(c)

- **1** Simplify the following:
 - **a** $x^5 x^2$ **b** $x^{1/5} x^{1/2}$ **c** $\frac{x^3}{x^3}$ **d** $\frac{x^7}{x^9}$
 - e $(\sqrt[5]{x})^2 \sqrt[3]{x}$
- **2** Simplify

a
$$(1 + y)^2(1 + y)$$
 b $\frac{(1 + x^2)^5}{(1 + x^2)^3}$

c
$$(\sqrt[3]{x^2 + x + 1})^5 \sqrt[3]{x^2 + x}$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

d
$$\left(\sqrt[3]{x^2 + x + 1}\right)^5 \sqrt[3]{x^2 + x + 1}$$

Questions 3 to 5, inclusive, are on [thermodynamics]

3 A gas in an engine obeys the law

$$P_1 V_1^{1.45} = P_2 V_2^{1.45}$$

where *P* represents pressure and *V* represents volume.

Exercise 1(c) continued

If $P_1 = 2 \times 10^6$ N/m², $V_1 = 0.15$ m³ and $P_2 = 2 \times 10^5$ N/m², find V_2 .

4 The work done, *W*, on the face of a piston by a gas is given by

$$W = \frac{CV_2^{-0.35} - CV_1^{-0.35}}{-0.35}$$

where $C = P_1 V_1^{1.35} = P_2 V_2^{1.35}$ (*P* and *V* are pressure and volume respectively and *C* is a constant). Show that

$$-0.35W = P_2V_2 - P_1V_1$$

5 The state of a gas changes from P_1 , V_1 and T_1 to P_2 , V_2 and T_2 (pressure, volume and temperature respectively). The characteristic equation is given by

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

By the polytropic law we have

 $P_1 V_1^n = P_2 V_2^n$

By using these formulae, show that

$$\frac{T_1}{T_2} = \left(\frac{P_1}{P_2}\right)^{1-\frac{1}{n}}$$

6 [aerodynamics] In aerodynamics the following equation holds:

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{g/LC} \left(\frac{T_1}{T_2}\right)$$

where ρ_1 , ρ_2 , T_1 and T_2 represent the densities and temperatures at altitude 1 and 2 respectively. *L* is the rate of decrease of temperature with altitude. *C* is a constant and *g* is acceleration due to gravity. Show that

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{g-LC}{LC}}$$

SECTION D Dimensional analysis

By the end of this section you will be able to:

> apply the rules of indices to check equations which involve physical quantities

D1 Dimensional analysis

There are **three** fundamental dimensions: Mass, Length and Time (M, L and T respectively). All mechanical quantities can be expressed in terms of powers of M, L and T. (Non-mechanical quantities such as electrical current can also be expressed in terms of M, L and T, but it is easier to introduce a fourth fundamental dimension – charge Q.)

We use the following notation:

[force] represents the dimension of force

Example 13

Obtain the fundamental dimensions of velocity (units m/s), acceleration (units m/s²) and force (= mass \times acceleration).

Solution

We know the units of velocity are m/s so the dimensions are

$$\frac{\text{Length}}{\text{Time}} = \frac{L}{T} = L \left(\frac{1}{T}\right) \underset{\text{by } 1.3}{=} L T^{-1} \text{ etc}$$

Similarly acceleration has units m/s² so the dimensions are

$$\frac{\text{Length}}{(\text{Time})^2} = \frac{L}{T^2} = L \left(\frac{1}{T^2}\right) \underset{\text{by I}.10}{=} L T^{-2}$$

What about force?

force = mass \times acceleration

$$[force] = M \times (LT^{-2})$$

$$= MLT^{-2}$$

Similarly we can evaluate the dimensions of the other quantities as shown in Table 1. Try verifying some of these in your own time.

-	Quantity	Units	Dimensions
TABLE	Area	m ²	L^2
TA	Volume	m ³	L^3
	Velocity	m/s	LT^{-1}
	Acceleration	m/s^2	LT^{-2}
	Force	newton (N)	MLT^{-2}
	Work (or energy)	joule (J)	$ML^2 T^{-2}$
	Power	watt (W)	$ML^2 T^{-3}$
	Pressure	N/m^2	$ML^{-1} T^{-2}$
	Density	kg/m ³	ML^{-3}
	Frequency	hertz (Hz)	T^{-1}

1.3
$$\frac{1}{x} = x^{-1}$$
 1.10 $\frac{1}{a^n} = a^{-n}$

?

Dimensional analysis is a method used in checking an equation by establishing the same dimension formula on each side of the equation, that is

[Left-Hand Side] = [Right-Hand Side]

Numbers with no units attached to them are dimensionless.

 \sim

Example 14 fluid mechanics

Bernoulli's equation is given by

 $P + \frac{1}{2}\rho v^2 + \rho gz = \text{constant}$

where P = pressure, ρ = density, v = velocity, z = height and g = acceleration due to gravity.

Find the dimensions of the constant.

Solution

Using Table 1 we have $\left(\text{remember } \frac{1}{2} \text{ is dimensionless}\right)$

$$\underbrace{ML^{-1} T^{-2}}_{p} + \underbrace{ML^{-3}}_{\rho} \underbrace{(LT^{-1})}_{v^{2}}^{2} + \underbrace{ML^{-3}}_{\rho} \underbrace{LT^{-2}L}_{g z}$$

$$= ML^{-1} T^{-2} + ML^{-3} \underbrace{L^{2} T^{-2}}_{by 1.7} + \underbrace{ML^{-3+2}}_{by 1.5} T^{-2}$$

$$= ML^{-1} T^{-2} + \underbrace{ML^{-1}T^{-2}}_{=L^{-3+2}} + ML^{-1}T^{-2}$$

Hence the constant has the dimensions $ML^{-1}T^{-2}$.

A physical requirement is that **dimensional homogeneity** holds, that is both sides of an equation have the same dimensions.

 $\widehat{}$

Example 15 mechanics

The period T of a pendulum of length l is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

where *g* is acceleration due to gravity. Show that the formula has dimensional homogeneity.

Example 15 continued

Solution

 $\widehat{}$

Remember 2π is dimensionless. By Table 1, *g* has the dimensions LT^{-2} . So we have

$$[T] = \sqrt{\frac{L}{LT^{-2}}} = \left(\frac{L}{LT^{-2}}\right)_{\text{by I.12}}^{\frac{1}{2}} = \frac{1^{\frac{1}{2}}}{(T^{-2})^{\frac{1}{2}}} = \frac{1}{\frac{1}{T^{-1}}} = \frac{1}{T^{-1}} = T$$

The last step is justified by

$$\frac{1}{T^{-1}} \underset{\text{by } 1.3}{=} (T^{-1})^{-1} \underset{\text{by } 1.7}{=} T^{(-1)\times(-1)} = T^{1} \underset{\text{by } 1.9}{=} T$$

Clearly period *T* has dimensions *T*.

SUMMARY

There are three fundamental dimensions – mass *M*, length *L* and time *T*. We can apply the rules of indices to check dimensional homogeneity.

Exercise 1(d)

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

All questions in this exercise belong to [dimensional analysis].

1 Show that the dimensions of

a pressure
$$\left(=\frac{\text{force}}{\text{area}}\right)$$
 are $ML^{-1}T^{-2}$

- **b** density $\left(=\frac{\text{mass}}{\text{volume}}\right)$ are ML^{-3}
- **c** momentum (= mass × velocity) are MLT^{-1}
- **d** power (= force × velocity) are ML^2T^{-3}
- **e** impulse (= force \times time) are *MLT*⁻¹
- **f** kinetic energy $\left(=\frac{1}{2} \times \text{mass} \times (\text{velocity})^2\right) \text{are } ML^2T^{-2}$
- **g** potential energy (= mass \times acceleration \times height) are ML^2T^{-2}

2 The pressure, *P*, at a depth *d* of a fluid of density *ρ* is given by

 $P = \rho g d (g = acceleration)$

Show that the formula has dimensional homogeneity.

3 Which of the following are dimensionally correct (have dimensional homogeneity)?

a
$$F = mgl$$

b $s = ut + \frac{1}{2}gt^{2}$
c $v^{2} = u^{2} + 2gs$
d $W = F \times v$
e $P = F \times l$

(m = mass, g = acceleration, l = length, t = time, s = distance, u and v = velocities, F = force, W = work and P = power).

1.3
$$\frac{1}{x} = x^{-1}$$
 1.7 $(a^m)^n = a^{m \times n}$ 1.9 $a^1 = a$ 1.12 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Exercise 1(d) continued

4 The dynamic coefficient of viscosity μ (viscosity of a fluid) is found from

$$F = \frac{\mu A \eta}{d}$$

where v = velocity, d = distance, F = force and A = area. Find the dimensions of μ .

5 Show that the following are dimensionless parameters by checking that the dimensions of each are equal to 1:

a Reynolds Number =
$$\frac{\rho v \iota}{\mu}$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

b Mach Number =
$$\frac{V}{c}$$

c Euler Number =
$$\frac{p}{\rho v^2}$$

d Froude Number =
$$\frac{v}{\sqrt{gl}}$$

e Weber Number = $\frac{v^2 l \rho}{\sigma}$

(ρ is density, v is velocity, g is acceleration due to gravity, *l* is length, μ is viscosity, p is pressure, c is speed of sound and σ is surface tension whose units are N/m.)

SECTION E Expansion of brackets

By the end of this section you will be able to:

- expand brackets
- use expansion of brackets in engineering applications
- expand brackets of the type (a + b)(c + d) using FOIL

E1 Revision of brackets

What does 5(x + 3) mean?

All the terms inside the bracket are multiplied by 5:

$$5(x + 3) = (5 \times x) + (5 \times 3) = 5x + 15$$

Let's do a few examples.

Example 16

Multiply out the brackets of the following:

a
$$5(2x + 1)$$

b 3(3x-2) **c** -(x-1) **d** -2(-x-4)

Solution

a $5(2x + 1) = (5 \times 2x) + (5 \times 1) = 10x + 5$

b $3(3x-2) = (3 \times 3x) - (3 \times 2) = 9x - 6$

c Remember that 'minus times minus equals plus':

Example 16 *continued*

$$-(x - 1) = -1(x - 1) = (-1 \times x) - \underbrace{[1 \times (-1)]}_{= -1} = -x + \underbrace{1}_{\text{because}}_{= (-1) = 1} = 1 - x$$

The result of taking a negative sign inside a bracket is to change **all** the signs inside the bracket.

d
$$-2(-x-4) = [-2 \times (-x)] - [2 \times (-4)] = 2x + 8$$

Example 17

Simplify the following:

a
$$3(x+2) + 5(2x+3)$$
 b $(x+5) - 2(x-1)$ **c** $-(2x+3) + (2x+3)$

Solution

We add all the like terms:

a
$$3(x + 2) + 5(2x + 3) = (3x + 6) + (10x + 15)$$

$$= 3x + 10x + (6 + 15)$$
collecting all the x terms

$$= 13x + 21$$
b Multiplying out the brackets gives
 $(x + 5) - 2(x - 1) = (x + 5) - (2 \times x) - (2 \times (-1))$
 $= (x + 5) - 2x + 2$
 $= x - 2x + (5 + 2)$
 $= 7 - x$
c $-(2x + 3) + (2x + 3) = 0$

Example 18 *structures*

The deflection, *y*, at a distance *x* from one end of a beam of length *l* is given by

$$y = \frac{wx^2}{6EI}(3l - x)$$

where w is the load per unit length and EI is the flexural rigidity of the beam. Remove the brackets of this expression.

Solution

d hand ha

We have

$$y = \frac{wx^{2}}{6EI}(3l - x) = \frac{wx^{2}}{6EI}3l - \frac{wx^{2}}{6EI}x$$
$$= \frac{3wx^{2}l}{6EI} - \frac{wx^{2}x}{6EI}$$
$$= \frac{wx^{2}l}{2EI} - \frac{wx^{3}}{6EI}$$

E2 Using FOIL

How do we remove the brackets from an expression like (x + 3)(x + 2)?

Each term of the first bracket (x and 3) multiplies the second bracket (x + 2):

$$(x + 3)(x + 2) = x(x + 2) + 3(x + 2)$$

= (x × x) + (x × 2) + (3 × x) + (3 × 2)
= x² + 2x + 3x + 6
= x² + 5x + 6

Another way is to use FOIL, which is a mnemonic for First, Outside, Inside and Last:

$$(x + 3)(x + 2) = \underbrace{(x \times x)}_{F} + \underbrace{(x \times 2)}_{O} + \underbrace{(3 \times x)}_{I} + \underbrace{(3 \times 2)}_{L}$$
$$= x^{2} + 5x + 6$$

Multiply

The First terms in each bracket

The Outside terms

The Inside terms

The Last terms

The process of multiplying brackets is also known as **expanding brackets**.

Example 19 Expand the following: **a** (x + 4)(x + 5) **b** (x + 5)(x - 1) **c** (2x + 3)(3x + 5) **d** (3x - 1)(4x - 2)Solution Using FOIL in each case gives **a** $(x + 4)(x + 5) = \underbrace{(x \times x)}_{F} + \underbrace{(x \times 5)}_{O} + \underbrace{(4 \times x)}_{I} + \underbrace{(4 \times 5)}_{L}$ $= x^2 + \underbrace{5x + 4x}_{=9x} + 20$ $= x^2 + 9x + 20$ **b** $(x + 5)(x - 1) = \underbrace{(x \times x)}_{F} + \underbrace{(x \times (-1))}_{O} + \underbrace{(5 \times x)}_{I} + \underbrace{(5 \times (-1))}_{L}$ = $x^2 - x + 5x - 5$ $= x^2 + \underbrace{4x}_{=5x-x} - 5$

Example 19 *continued*

$$c (2x + 3)(3x + 5) = (2x \times 3x) + (2x \times 5) + (3 \times 3x) + (3 \times 5)$$

= $6x^2 + 10x + 9x + 15$
= $6x^2 + 19x + 15$
d $(3x - 1)(4x - 2) = (3x \times 4x) + (3x \times (-2)) + ((-1) \times 4x) + ((-1) \times (-2))$
= $12x^2 - 6x - 4x + 2$
= $12x^2 - 10x + 2$

E3 Important expansions

Important expansions are $(a + b)^2$ and $(a - b)^2$. Let's use FOIL to expand these.

We have

$$(a+b)^{2} = (a+b)(a+b) = (\underbrace{a \times a}_{F} + (\underbrace{a \times b}_{O}) + (\underbrace{b \times a}_{I}) + (\underbrace{b \times b}_{L})$$
$$= a^{2} + \underbrace{ab + ba}_{=2ab} + b^{2}$$
$$= a^{2} + 2ab + b^{2}$$

Similarly we have

$$(a-b)^2 = (a-b)(a-b) = (\underbrace{a \times a}_{F}) - (\underbrace{a \times b}_{O}) - (\underbrace{b \times a}_{I}) + (\underbrace{b \times b}_{L})$$
$$= a^2 - ab - ba + b^2$$
$$= a^2 - 2ab + b^2$$

Note these results:

 $(a + b)^2 \neq a^2 + b^2$ [Not equal] $(a - b)^2 \neq a^2 - b^2$ [Not equal]

The symbol ' \neq ' means 'does not equal'.

It is useful to remember these results:

1.13	$(a+b)^2 = a^2 + 2ab + b^2$
1.14	$(a - b)^2 = a^2 - 2ab + b^2$

For example, by using 1.13 with a = 2x and b = 3 we have

$$(2x + 3)^2 = (2x)^2 + (2 \times 2x \times 3) + 3^2$$

= 2²x² + (4x × 3) + 9
= 4x² + 12x + 9

Similarly, using 1.14 with a = 5x and b = 2 we have

$$(5x - 2)^{2} = (5x)^{2} - (2 \times 5x \times 2) + 2^{2}$$
$$= 5^{2}x^{2} - (10x \times 2) + 4$$
$$= 25x^{2} - 20x + 4$$

Another important result which will be discussed in Exercise 1(e) is

1.15 $(a-b)(a+b) = a^2 - b^2$

Expansions of the type **1.13**, **1.14** and **1.15** are prevalent in many fields of engineering and are worth learning until they become second nature to you.

Example 20 *electrical principles*

The impedance, Z, of a circuit is given by

$$Z^2 = R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2$$

where *R* is resistance, *L* is inductance, *C* is capacitance and ω is angular frequency. Expand the brackets and simplify.

Solution

Substituting
$$a = \omega L$$
 and $b = \frac{1}{\omega C}$ into $(a - b)^2 = a^2 - 2ab + b^2$ produces

$$\left(\omega L - \frac{1}{\omega C}\right)^{2} = (\omega L)^{2} - \left(2 \times \omega L \times \frac{1}{\omega C}\right) + \left(\frac{1}{\omega C}\right)^{2}$$
$$= \omega^{2}L^{2} - \left(\frac{2 \times L \times 1}{C}\right) + \frac{1^{2}}{(\omega C)^{2}}$$
$$= \omega^{2}L^{2} - \frac{2L}{C} + \frac{1}{\omega^{2}C^{2}}$$
[Simplifying]

Substituting this into the original formula gives

$$Z^{2} = R^{2} + \omega^{2}L^{2} - \frac{2L}{C} + \frac{1}{\omega^{2}C^{2}}$$

SUMMARY

Expand brackets of the form (a + b)(c + d) by using FOIL (<u>First</u>, <u>Outside</u>, <u>Inside</u>, <u>Last</u>). Important expansions are

- 1.13 $(a + b)^2 = a^2 + 2ab + b^2$
- 1.14 $(a b)^2 = a^2 2ab + b^2$
- 1.15 $(a + b)(a b) = a^2 b^2$

Exercise 1(e)

- **1** Multiply out the brackets and simplify:
 - **a** 2(3x + 1) **b** -(2x + 1)
 - **c** -3(5y + 1) **d** x(3x + 5)
 - **e** 3(y-1) (2y+1)
 - **f** x(x-3) + x(3x+2)
- **2** [*structures*] Remove the brackets from the following and simplify:

a
$$y = \frac{w}{2EI} (Lx^3 - x^4)$$

b $y = \frac{wx^3}{8EI} (2L - 3x)$
c $y = \frac{wx^2}{48EI} (3L^2 - 2x^2)$
d $y = -\frac{w}{12EI} \left(Lx^3 - \frac{x^4}{2} - \frac{L^3x}{2} \right)$

(*L* is length of beam, *x* is distance along the beam, *EI* is the flexural rigidity, *y* is deflection of the beam and *w* is the load per unit length).

- **3** Expand the following brackets and simplify:
 - **a** (x + 1)(x + 2)
 - **b** (2x + 3)(3x + 5)
 - **c** $(2x-1)^2$
 - **d** $(a+b)^2 (a-b)^2$
 - **e** $(xy + 1)^2 x(y + 1)$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

- 4 By expanding brackets show that
 - **a** $(x-5)(x+5) = x^2 25$
 - **b** $(2x 3)(2x + 3) = 4x^2 9$
 - **c** $(9x 7)(9x + 7) = 81x^2 49$
- What do you notice about the above results?

In general

1.15
$$(a + b)(a - b) = a^2 - b^2$$

This is known as the difference between two squares.

5 [*electrical principles*] Expand and simplify the following:

a
$$(R + \omega L)(R - \omega L)$$

b
$$\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2$$

(*R* is resistance, ω is angular frequency, *L* is inductance and *C* is capacitance).

6 Find

 $(x-a)(x-b)(x-c)\ldots(x-z)$

where...means (x - number represented by next letter of the Roman alphabet).

SECTION F Factorization

By the end of this section you will be able to:

- factorize simple expressions
- ► factorize quadratic expressions

F1 Factorizing expressions

We investigated factors in the Introductory chapter. What are the factors of 10?

5 and 2 because $5 \times 2 = 10$

Of course there are other factors of 10:1 and 10.

Similarly $2 \times 5 \times 7 = 70$ and we say that 2, 5 and 7 are factors of 70. In this section we look at factors of algebraic expressions.

Example 21

Factorize 5x + 5y + 5z.

Solution

?

What do you notice about 5x + 5y + 5z?

The number 5 is common to all the terms in 5x + 5y + 5z. We write

5x + 5y + 5z = 5(x + y + z)

and say that 5 and x + y + z are **factors** of 5x + 5y + 5z.

Factorization is the reverse process of expansion discussed in the previous section.

How do we factorize an expression like

 $5x - 4x^2?$

We know *x* is common in both terms because $x^2 = xx$, thus

$$5x - 4x^2 = 5x - 4xx = x(5 - 4x)$$

How do we factorize an engineering expression such as

$$y = \frac{wx^2}{EI} - \frac{wx^3}{EI}?$$

We know from the rules of indices that x^3 can be written as x^2x , so we have:

$$y = \frac{wx^2}{EI} - \frac{wx^2 x}{EI}$$

?

What is common between the two terms on the Right-Hand Side?

Clearly it is $\frac{wx^2}{EI}$. So we can take out this common factor and write *y* as

$$y = \frac{wx^2}{EI}1 - \frac{wx^2}{EI}x = \frac{wx^2}{EI}(1-x)$$

Let's do another example.

Example 22 structures

The deflection y of a beam of length L at distance x is given by

$$y = \frac{wx^2 L^2}{16EI} + \frac{wx^4}{16EI}$$

where *w* is the load per unit length and *EI* is the flexural rigidity. Factorize this expression.

the second

Solution

From the rules of indices we have $x^4 = x^2 x^2$, so we can write *y* as

$$y = \frac{wx^2 L^2}{16EI} + \frac{wx^2 x^2}{16EI}$$

 $\frac{wx^2}{16EI}$ is common to both terms on the Right-Hand Side, so we can take this factor out:

$$y = \frac{wx^2}{16EI}(L^2 + x^2)$$

The next example is a lot more difficult because it involves an algebraic fraction with different denominators.

Example 23 structures

The deflection, *y*, of a beam of length *L* at distance *x* is given by

$$y = \frac{wx^2 L^2}{8EI} - \frac{wx^4}{24EI}$$

where w is the load per unit length and EI is the flexural rigidity. Factorize this expression.

Solution

From the rules of indices we have $x^4 = x^2 x^2$, so we can write *y* as

$$y = \frac{wx^2 L^2}{8EI} - \frac{wx^2 x^2}{24EI}$$

*

$$\frac{wx^2}{EI}$$
 is common to both terms on the Right-Hand Side, so we can take this factor out:
* $y = \frac{wx^2}{EI} \left(\frac{L^2}{8} - \frac{x^2}{24} \right)$

Can we factorize this further?

Yes. The bracket term $\frac{L^2}{8} - \frac{x^2}{24}$ is an example of an algebraic fraction. It is dealt with in the same way as an arithmetic fraction.

How do you evaluate $\frac{1}{8} - \frac{1}{24}$?

We need a common denominator, 24. Hence

$$\frac{1}{8} - \frac{1}{24} = \frac{3}{\underbrace{24}_{=1/8}} - \frac{1}{24}$$

?

?

Example 23 continued

Similarly we have

dimenta in

$$\frac{L^2}{8} - \frac{x^2}{24} = \frac{3L^2}{24} - \frac{x^2}{24} = \frac{3L^2 - x^2}{24}$$

(Of course we cannot simplify $3L^2 - x^2$ any further because they are not like terms.) Substituting $\frac{L^2}{8} - \frac{x^2}{24} = \frac{3L^2 - x^2}{24}$ into \mathbf{x} gives $y = \frac{wx^2}{EI} \left(\frac{3L^2 - x^2}{24} \right)$ $= \frac{wx^2}{24EI} (3L^2 - x^2)$

In **Example 23** the examination of the fraction, $\frac{1}{8} - \frac{1}{24}$, might seem like a diversion, but to deal with the algebraic fraction, $\frac{L^2}{8} - \frac{x^2}{24}$, we need to consider the arithmetic fraction.

F2 Factorizing quadratics $(ax^2 + bx + c)$

An expression of the form $ax^2 + bx + c$ (where *a* is not zero) is called a **quadratic**. Expand (x + 2)(x + 5).

We can use FOIL:

2

$$(x + 2)(x + 5) = \underbrace{(x \times x)}_{F} + \underbrace{(x \times 5)}_{O} + \underbrace{(2 \times x)}_{I} + \underbrace{(2 \times 5)}_{L}$$
$$= x^{2} + 5x + 2x + 10$$
$$= x^{2} + 7x + 10$$

Remember in this section we go in the opposite direction.

How can we obtain (x + 2)(x + 5) given the quadratic $x^2 + 7x + 10$? (Or how do we factorize $x^2 + 7x + 10$?)

Let's assume we don't know the factors of $x^2 + 7x + 10$. We know $x^2 + 7x \pm 10 = (x \pm *)(x \pm \bullet)$ because $x \times x$ gives x^2 .

1 If the sign in front of 10 is

- + then \pm and \pm in the brackets are the same sign
- then \pm and \pm in the brackets are different signs

In this example, \pm and \pm are the same sign but we have to establish which sign.

2 If the signs are the same then

 $x^2 \pm 7x + 10 = (x \pm \star)(x \pm \bullet)$

this first sign tells you what the sign is, hence

 $x^{2} + 7x + 10 = (x + *)(x + \bullet)$

3 Now we look at the factors of 10 (because 10 is the only term in the quadratic which does not contain an *x*). What are the factors of 10?

```
10 and 1 or 5 and 2
```

We have a 7x on the Left-Hand Side, therefore

 $7x = x \bullet + *x$ [Expanding] = $(\bullet + *)x$ [Factorizing]

Since we want 7 in the middle, * must be 5 and • must be 2 (or vice versa). So we have

 $x^{2} + 7x + 10 = (x + 5)(x + 2)$

Let's do another example.

Example 24

Factorize $x^2 - 2x - 3$.

Solution

Using the above procedure we have

 $x^2 - 2x = 3 = (x +)(x -)$

Because of this, the signs are different. Next we look at the factors of 3.

What are the factors of 3?

1 and 3

Hence we have

(x + 1)(x - 3) or (x + 3)(x - 1)

Since we want -2 in the middle it is -3 and +1. Thus

 $x^2 - 2x - 3 = (x + 1)(x - 3)$

How do we factorize $x^2 + 5x - 3$?

Since the only factors of 3 are 1 and 3 we can only have

(x + 1)(x - 3) or (x - 1)(x + 3)

Multiplying out either of these does not give

 $x^2 + 5x - 3$

Where have we made a mistake?

There is **no** mistake. Simply, **not** all quadratics, $ax^2 + bx + c$, can be factorized into whole numbers. The actual factorization is

$$x^{2} + 5x - 3 = \left(x + \frac{5 - \sqrt{37}}{2}\right)\left(x + \frac{5 + \sqrt{37}}{2}\right)$$

?

2

Of course this looks horrendous and you are not expected to attempt this factorization in this chapter. The quadratic $x^2 + 5x - 3$ cannot be factorized into simple whole numbers.

Example 25

Factorize $2x^2 + 7x - 15$.

Solution

We know:

 $2x^2 + 7x - 15 = (2x \pm *)(x \pm \bullet)$ [Because we want $2x^2$]

This sign tells us that the signs in the middle (\pm and \pm) are different.

So we have

 $(2x - *)(x + \bullet)$ or $(2x + *)(x - \bullet)$

Let's consider the case $(2x - *)(x + \bullet)$. The factors of 15 are 15 and 1 or 5 and 3. We need a 7 in the middle (the *x* term). In this example we need to be careful because the middle term is obtained by only the middle term

$$(2x - \star)(x + \bullet) = \dots \underbrace{2x \times \bullet}_{\text{outside}} + \underbrace{x \times (-\star)}_{\text{inside}} \dots$$

Clearly the factors 15 and 1 are useless because we will never get 7. They need to be 5 and 3 because $(2 \times 5) - 3 = 7$. So • is 5 and * is 3, that is the *x* term is made from $(2 \times 5) - 3 = 7$. We have

$$2x^2 + 7x - 15 = (2x - 3)(x + 5)$$

You can always check your result; expanding (2x - 3)(x + 5) gives $2x^2 + 7x - 15$. Also note that if you change the signs such that we have (2x + 3)(x - 5) then you get -7x in the middle and not +7x as required. You can only judge the placement of signs by practising a number of factorizations. It's good practice to expand your final factorization to check your result.

F3 Important factorization

How do we factorize $x^2 - 25$?

It is a quadratic because the highest power term is x^2 and it doesn't matter if there is no x. Remember a quadratic is $ax^2 + bx + c$ where a is **not** zero but b or c may be zero.

How do we factorize this, $x^2 - 25$?

We can use

1.15 $a^2 - b^2 = (a + b)(a - b)$

It's easier than the above, so we have

$$x^{2} - 25 = x^{2} - 5^{2}$$

= $(x + 5)(x - 5)$
by L15

Similarly we have

$$x^{2} - 9 = (x + 3)(x - 3)$$

$$x^{2} - 16 = (x + 4)(x - 4)$$

$$x^{2} - 5 = x^{2} - (\sqrt{5})^{2}$$

$$= (x + \sqrt{5})(x - \sqrt{5})$$

Rewriting $5 = (\sqrt{5})^{2}$

Let's investigate a more challenging example.

 $\widehat{}$

Example 26 *mechanics*

The equation of an object falling in air is given by

 $ma = mg - kv^2$

where $m (\neq 0)$ is the mass of the object, *a* is acceleration, *v* is velocity, *g* is acceleration due to gravity and *k* is a constant. Show that

$$a = \left(\sqrt{g} - cv\right)\left(\sqrt{g} + cv\right)$$
 where $c = \sqrt{\frac{k}{m}}$

Solution

Dividing the initial equation, $ma = mg - kv^2$, by *m* gives

$$a = \frac{mg}{m} - \frac{k}{m}v^2 = g - \frac{k}{m}v^2$$

From earlier work we know that $g = \left(\sqrt{g}\right)^2$ and $\frac{k}{m} = \left(\sqrt{\frac{k}{m}}\right)^2$ so we have
$$a = \left(\sqrt{g}\right)^2 - \left(\sqrt{\frac{k}{m}}\right)^2 v^2$$
$$= \left(\sqrt{g}\right)^2 - c^2 v^2 \qquad \text{where} \quad c = \left(\sqrt{\frac{k}{m}}\right)$$
$$= \left(\sqrt{g}\right)^2 - \frac{(cv)^2}{by}$$

How can we place $\left(\sqrt{g}\right)^2 - (c\nu)^2$ into two brackets? Use 1.15, hence

$$a = \left(\sqrt{g}\right)^2 - (cv)^2 = \left(\sqrt{g} - cv\right)\left(\sqrt{g} + cv\right)$$

1.11 $a^n b^n = (ab)^n$ **1.15** $a^2 - b^2 = (a - b)(a + b)$

?

SUMMARY

To factorize $ax^2 + bx + c$ we need to look at factors of a and c and signs inside the expression. A common factorization is

 $a^2 - b^2 = (a - b)(a + b)$ 1.15

You need to know this result in both directions, that is from left to right and right to left.

Exercise 1(f)	Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh
1 Factorize the following: a $4x + 4y + 4z$ b $8x + 8xy$ c $2x - 4y$ d $3x - 2x^2$ e $x^2 - xy$	Show that $F = \frac{2V}{V_{\rm s} + V}$
2 $\bigcap [mechanics]$ The following formulae occur in mechanics. Factorize each of them. a $s = ut + \frac{1}{2}at^2$ b $F = \frac{mv_2}{t} - \frac{mv_1}{t}$	7 [structures] Factorize the following: a $y = \frac{3wLx^2}{6EI} - \frac{wx^3}{6EI}$ b $y = \frac{wLx^3}{4EI} - \frac{3wx^4}{8EI}$
t t c $F = \rho A v_2 v_1 - \rho A v_1^2$ 3 The surface area, <i>S</i> , of a cone of radius <i>r</i> and height <i>h</i> is given by $S = \pi r^2 + \pi r (r^2 + h^2)^{1/2}$	c $y = \frac{wx^4}{24EI} - \frac{wLx^3}{12EI} + \frac{wL^2 x^2}{24EI}$ where <i>y</i> is the deflection at a distance <i>x</i> along a beam of length <i>L</i> , <i>w</i> is load per unit length and <i>EI</i> is flexural rigidity.
Factorize this formula. 4 Factorize the following: a $x^2 + 7x + 10$ b $x^2 + 5x + 4$ c $x^2 - 5x + 4$ d $x^2 - 4x - 12$ e $2x^2 + x - 1$ f $x^2 - 3x - 4$	8 [mechanics] The acceleration, <i>a</i> , of an object in vibration is given by $a = g - k^2 \omega^2$
g $21x^2 + 29x - 10$ 5 [electrical principles] Factorize the following:	where <i>g</i> is acceleration due to gravity, ω i angular frequency and <i>k</i> is a constant.

Show that
$$a = \left(\sqrt{g} - k\omega\right) \left(\sqrt{g} + k\omega\right)$$

9 [*structures*] The deflection, *y*, of a beam of length *l* at a distance *x* from one end is given by

$$y = \frac{wx^3}{12EI} - \frac{lx^2w}{8EI} + \frac{l^2wx}{24EI}$$

).

where EI is flexural rigidity and w is load per unit length on the beam. Show that

$$y = \frac{wx}{24EI}(2x - l)(x - l)$$

- 2
- 3
- Ę following:

a
$$Z^2 - R^2$$
 b $\omega^2 L^2 - \frac{1}{\omega^2 C^2}$

(Z is impedance, R is resistance, L is inductance, *C* is capacitance and ω is angular frequency).

6 🔀 [aerodynamics] The Froude efficiency, F, of a propulsive system is given by

$$F = \frac{2(VV_{\rm s} - V^2)}{V_{\rm s}^2 - V^2}$$

 $[V_{s} \text{ and } V \text{ are velocities}].$

Exercise 1(f) continued

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

10 Electrical principles] Show that

a If
$$N = \frac{Z_0 + \frac{1}{2}Z_1}{Z_0 - \frac{1}{2}Z_1}$$
 then
$$Z_1 = 2Z_0 \left(\frac{N-1}{N+1}\right)$$

b If
$$Z_1(N-1)^2 + 2Z_0(N^2-1)$$

= $Z_1(N+1)^2$

then
$$Z_1 = Z_0 \left(\frac{N^2 - 1}{2N} \right)$$

 $(Z_1, Z_0 \text{ are impedances and } N \text{ is a number}).$

Section G Quadratic equations

By the end of this section you will be able to:

- ► solve some quadratic equations of the form $ax^2 = b$
- solve some quadratic equations by factorization
- ► solve all quadratic equations by formula

In Section A3 we considered linear equations. In this section we consider the different methods involved in solving quadratic equations.

A **quadratic equation** is an equation with the unknown variable to the second power. It has the form

$$ax^2 + bx + c = 0 \qquad [a \neq 0]$$

where *x* is the unknown variable. In **Example 27** below both equations are quadratics.

G1 Solving quadratics using factorization

We use the process of factorization described in the previous section to solve quadratic equations.

We know from the Introductory chapter that if the result of multiplying two numbers is zero then one of the numbers must be zero. This can be stated as:

If *A* and *B* are numbers and $A \times B = 0$ then A = 0 or B = 0.

We use this to solve various equations, for example to solve $x^2 - 2x = 0$.

Since *x* is common in both terms we can factorize, thus

$$x^{2} - 2x = xx - 2x = 0$$

$$x(x - 2) = 0$$
 [Factorizing]

$$x = 0 \text{ or } x - 2 = 0$$

$$x = 0 \text{ or } x = 2$$

Example 27 Solve the following equations: **a** $x^2 - x - 6 = 0$ **b** $27x^2 - 6x - 5 = 0$ Solution **a** What are we trying to find? 2 The value(s) of x satisfying $x^2 - x - 6 = 0$. Can we factorize $x^2 - x - 6$? $x^2 - x - 6 = (x + 2)(x - 3)$ So we have (x+2)(x-3) = 02 What can we say about (x + 2)(x - 3) = 0? (x + 2) = 0 or (x - 3) = 0Hence we have x + 2 = 0 or x - 3 = 0x = -2 or x = 3**b** Factorizing $27x^2 - 6x - 5$ is more difficult but it can factorized into whole numbers: $27x^2 - 6x - 5 = (3x + 1)(9x - 5)$ (3x + 1)(9x - 5) = 0which gives 3x + 1 = 0 or 9x - 5 = 03x = -1 or 9x = 5 $x = \frac{-1}{3} = -\frac{1}{3}$ or $x = \frac{5}{9}$

Remember that not all quadratics can be factorized into simple whole numbers.

Example 28 *mechanics*

A body of mass m = 35 kg has kinetic energy, KE = 3500 joule (J). Find the speed v given that

$$KE = \frac{1}{2}mv^2$$

Solution

A

Substituting m = 35 and KE = 3500 into $\frac{1}{2}mv^2 = KE$ gives

$$\frac{1}{2}35v^2 = 3500$$

?

[?]

Example 28 continued

How do we find *v*?

We first find v^2 and then take the square root.

So we need to remove the $\frac{1}{2}$ and 35 from the Left-Hand Side. How?

Multiply both sides by 2:

 $35v^2 = 3500 \times 2 = 7000$

Divide both sides by 35:

$$v^2 = \frac{7000}{35} = 200$$

Taking the square root of both sides and using a calculator gives

 $v = \sqrt{200} = 14.14 (2 \text{ d.p.}) = 14 \text{ m/s} (2 \text{ s.f.})$

G2 Solving quadratics using formula

The formula for solving a quadratic equation

 $ax^2 + bx + c = 0$

where x is a unknown variable is given by

 $1.16 \qquad \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Subsequently we will show this result in Chapter 2. (See question 8 in Exercise 2(d).)

If the factorization is difficult or impossible then we use **1.16**. Generally students prefer to use this formula rather than factorization even when they shouldn't, for example to solve $x^2 - 2x = 0$.

Example 29 structures

The bending moment, *M*, of a beam is given by

 $M = 0.3x^2 + 0.35x - 2.6$

where *x* is the distance (in m) along a beam from one end. Find the value of *x* for which M = 0.

Solution

We have

 $0.3x^2 + 0.35x - 2.6 = 0$

Example 29 *continued*

It is not easy to factorize this, so we use formula 1.16 to determine *x*. For the formula, *a* is the number next to x^2 , *b* is the number next to *x* and *c* is the number without any *x* attached to it. Hence

$$a = 0.3$$
, $b = 0.35$ and $c = -2.6$

Substituting this, a = 0.3, b = 0.35 and c = -2.6, into

$$1.16 \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

gives

d parts

$$x = \frac{-0.35 \pm \sqrt{0.35^2 - (4 \times 0.3 \times (-2.6))}}{2 \times 0.3}$$
$$= \frac{-0.35 \pm \sqrt{3.243}}{0.6}$$
$$= \frac{-0.35 \pm 1.801}{0.6}$$
$$x = \frac{-0.35 \pm 1.801}{0.6} \text{ or } \frac{-0.35 - 1.801}{0.6}$$
$$x = 2.42 (2 \text{ d.p.}) \text{ or } x = -3.59 (2 \text{ d.p.})$$

Since we cannot have a distance of -3.59 m on the beam, the bending moment M = 0 is at x = 2.42 m.

SUMMARY

For a quadratic equation, $ax^2 + bx + c = 0$, first seek factorization. If this fails then try the formula

$$1.16 \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Exercise 1(g)

1 Solve the following equations:

a
$$2x - 1 = 0$$

- **b** $x^2 + 5x + 6 = 0$
- **c** $x^2 10x + 21 = 0$
- **d** $6x^2 13x 5 = 0$
- **e** $5x^2 + 14x 3 = 0$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

2 [*mechanics*] A vehicle with velocity *v* and constant acceleration *a* is related by

$$v^2 = u^2 + 2as$$

where *s* is the distance and *u* is the initial velocity. If $a = 3.2 \text{ m/s}^2$, s = 187 m and v = 35 m/s, find *u*.

Exercise 1(g) continued

3 [*structures*] The maximum deflection of a beam occurs at *x* satisfying

$$2x^2 - 3xL + L^2 = 0$$

where *L* is the length of the beam and *x* is the distance along the beam from one end. Find *x* at maximum deflection.

4 [mechanics] The displacement, *s*, of a particle is given by

$$s = 1.9t + 4.3t^2$$
 $(t \ge 0)$

where *t* is time. Find the time taken for a displacement of 50 m.

- A rectangular conservatory has length *l* and its width is 5 m shorter then its length. Given that the area of the floor is 84 m², find the dimensions of the floor.
- **6** [*structures*] The bending moment, *M*, of a beam is given by

 $M = 3000 - 500x - 20x^2$

where *x* is the distance along the beam from one end. At what distance is the bending moment M = 0.

7 [*structures*] A simply supported beam has the bending moment, *M*, given by

$$M = \frac{15}{8}x - \frac{29}{4}\left(x - \frac{1}{2}\right)^2$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

where *x* is the distance along the beam from one support. Find the value(s) of *x* for M = 0.

8 [mechanics] The height *h* (above the ground level) of a ball thrown vertically upwards is given by

$$h = -4.9t^2 + 55t + 12$$

where *t* is time. Find the time taken to reach the ground.

9 [mechanics] A ball is thrown vertically upwards from a height h₀. The height h above ground level is given by

$$h = h_0 + ut - \frac{1}{2}gt^2$$

where t is time and u is initial velocity. Find an expression of t for the ball to reach the ground.

10 [*aerodynamics*] The following equation occurs in aerodynamics:

$$\frac{-T}{2wL^{3/2}} = \frac{4kL^{5/2} - 3(DL^{1/2} + kL^{5/2})}{2L^3}$$
$$(L \neq 0, w \neq 0)$$

where *T* is thrust, *w* is weight, *L* is lift coefficient, *D* is drag coefficient and $k \ (\neq 0)$ is a constant. Show that

$$L = \frac{-T \pm \sqrt{T^2 + 12kDw^2}}{2kw}$$

SECTION H Simultaneous equations

By the end of this section you will be able to:

solve a pair of linear simultaneous equations

H1 Solving simultaneous linear equations

Simultaneous means occurring together. **Simultaneous equations** are a set of equations such that the unknown variables x, y, z... have the same values satisfying each equation. In this section we solve two simultaneous linear equations.

Example 30

Solve the simultaneous equations:

150x + 140y = 10.4

150x + 100y = 10

Solution

?

?

What are we trying to find?

The values of *x* and *y* satisfying the above equations:

† 150x + 140y = 10.4

†† 150x + 100y = 10

If we subtract these equations, $\dagger - \dagger \dagger$:

$$\ddagger 150x + 140y = 10.4$$

††
$$-(150x + 100y = 10)$$

we get
$$0 + 40y = 0.4$$

Can we solve 40y = 0.4?

This is just a **linear equation** with one unknown, *y* :

$$40y = 0.4$$
$$y = \frac{0.4}{40} = 0.01$$

?

?

Have we completed this problem?

No, we need to find *x*. How do we find *x*?

Substitute y = 0.01 into $\uparrow \uparrow$ (or \uparrow):

$$150x + (100 \times 0.01) = 10$$

$$150x + 1 = 10$$

$$150x = 9$$

$$x = \frac{9}{150} = 0.06$$

Hence

x = 0.06 and y = 0.01

Example 30 continued

We can check our solution by substituting x = 0.06 and y = 0.01 into the original equations:

```
150x + 140y = 10.4150x + 100y = 10
```

We get

 $(150 \times 0.06) + (140 \times 0.01) = 10.4$ $(150 \times 0.06) + (100 \times 0.01) = 10$

The procedure outlined in the above example is a process of **elimination**. We eliminate one of the unknown variables and then solve for the remaining unknown variable.

$$\mathbf{A}$$

Example 31 mechanics

The distance, s, travelled by an object is given by

$$s = ut + \frac{1}{2}at^2$$

where *a* is constant acceleration, *u* is initial velocity and *t* is time.

An experiment produces the following results: After times of 3 s and 5 s the distances travelled by the object are 66 m and 160 m respectively.

Determine the values of *u* and *a*.

Solution

Substituting t = 5 and s = 160 into $ut + \frac{1}{2}at^2 = s$ gives $5u + \frac{1}{2}5^2a = 160$ Substituting t = 3 and s = 66 into $ut + \frac{1}{2}at^2 = s$ gives $3u + \frac{1}{2}3^2a = 66$

Rewriting these as

 $\ddagger 5u + 12.5a = 160$

†† 3u + 4.5a = 66

How can we get one equation with one unknown from † and †† ?

In the previous example we had the same number of *x*'s so, when we subtracted, the *x*'s vanished. Can we remove the u's from **†** and **†** ?

Yes, we need to make the numbers in front of u (the coefficients of u) to be the same. In \uparrow we have 5u and in $\uparrow\uparrow$ we have 3u.

?

?

Example 31 *continued*

If we multiply 5u by 3 we get 15u and if we multiply 3u by 5 we also get 15u. Thus multiplying \uparrow by 3 gives

 $(3 \times 5u) + (3 \times 12.5a) = 3 \times 160$

15u + 37.5a = 480

and multiplying **††** by 5 yields

15u + 22.5a = 330

?

 $\widehat{}$

Why?

*

**

Because when we subtract, * – ** , the *u*'s are eliminated:

*
$$15u + 37.5a = 480$$

** $-(15u + 22.5a = 330)$
 $0 + 15a = 150$
 $a = \frac{150}{15}$
 $a = 10$

Substituting a = 10 into 3u + 4.5a = 66 gives the linear equation

$$3u + (4.5 \times 10) = 66$$

$$3u + 45 = 66$$

$$3u = 66 - 45 = 21$$

$$u = \frac{21}{3} = 7$$

We have $a = 10 \text{ m/s}^2$ and u = 7 m/s. You can check your result by plugging these numbers into the original equations.

Why do you think we remove the *u*'s in the above example?

It is straightforward to find a common multiple of 3 and 5, that is 15, rather than find a common multiple of 4.5 and 12.5. We say that the 5 of 5u is the coefficient of u.

SUMMARY

For two simultaneous linear equations, eliminate one of the unknown variables and the result is a linear equation with one unknown. Solve for this unknown, substitute this value into one of the original equations and solve for the remaining unknown.

Exercise 1(h)

1 Solve the simultaneous equations:

$$8x + 5y = 13$$
$$x + 5y = 6$$

2 [*mechanics*] A lifting machine obeys the law

E = aW + b

where *E* is effort force, *W* is load and *a*, *b* are constants. An experiment produces the following results: Effort forces of 45.5 N and 53 N lift loads of 70 N and 120 N respectively. Find the values of the constants *a* and *b*.

3 [*mechanics*] The displacement, *s*, of a body is given by

$$s = ut + \frac{1}{2}at^2$$

where *t* is time, *u* is initial velocity and *a* is acceleration. If at t = 2 s then s = 33 m and at t = 3 s then s = 64.5 m, find the initial velocity (*u*) and acceleration (*a*).

4 🙀 [electrical principles] By applying Kirchhoff's law in a circuit we obtain

$$25(I_1 - I_2) + 56I_1 = 2.225$$

$$17I_2 - 3(I_1 - I_2) = 1.31$$

where I_1 and I_2 represent currents. Find I_1 and I_2 .

5 *[materials*] The length, ℓ, of an alloy varies with temperature *t* according to the law

$$\ell = \ell_0 (1 + \alpha t)$$

where ℓ_0 is the original length of the alloy and α is the coefficient of linear expansion. An experiment produces the following results:

At $t = 55 \,^{\circ}\text{C}$ $\ell = 20.11 \,\text{m}$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

At $t = 120 \,^{\circ}\text{C}$ $\ell = 20.24 \,\text{m}$

Determine ℓ_0 and α . (The units of α are /°C.)

(*Hint*: Eliminate ℓ_0 by division.)

6 [*electrical principles*] Resistors R_1 and R_2 are parallel in a circuit and satisfy

$$\frac{1}{R_1} + \frac{1}{R_2} = 1.2 \times 10^{-3}$$
$$\frac{5}{R_1} + \frac{8}{R_2} = 6.6 \times 10^{-3}$$

Determine R_1 and R_2 .

(*Hint*: Work in terms of $1/R_1$ and $1/R_2$.)

7 *[dimensional analysis]* The force, *F*, of a jet is a function of density *ρ*, area *A* and velocity *ν*. By assuming

$$F = K\rho^a A^b v^c$$

and dimensional homogeneity, find *a*, *b* and *c* and express *F* in terms of ρ , *A* and *v*. (*K*, *a*, *b* and *c* are real numbers. *Hint*: Use the fact that the equations must be dimensionally homogeneous to write three simultaneous equations by using Table 1.)

8 *[dimensional analysis]* The power, *P*, required to drive an air screw depends on the diameter *D*, the number *n* of revolutions per second and density *ρ*. Assume

$$P = K\rho^a n^b D^c$$

where *K*, *a*, *b* and *c* are real numbers. Using dimensional analysis, or otherwise, determine *a*, *b* and *c* and write down the equation relating *P*, ρ , *n* and *D*. (Take the dimensions of *n* to be T^{-1} .) Miscellaneous exercise 1

1 [aerodynamics] The pressure coefficient *C* is defined by

$$C = \frac{\frac{1}{2}\rho(v^2 - u^2)}{\frac{1}{2}\rho v^2}$$

where u, v are velocities and ρ is density. Simplify this formula.

2 $\sum_{n=1}^{\infty} [fluid mechanics]$ The pressures P_1 and P_2 at depths d_1 and d_2 respectively are given by

$$P_1 = \rho g(d - d_1)$$
$$P_2 = \rho g(d - d_2)$$

where *d* is depth of the fluid, ρ is the density of fluid and *g* is acceleration due to gravity. Show that

$$P_2 - P_1 = -\rho g (d_2 - d_1)$$

3 \bigotimes [*fluid mechanics*] The head loss, *h*, of a fluid in a pipe is given by

$$h = \frac{v_2}{g}(v_2 - v_1) - \frac{v_2^2 - v_1^2}{2g}$$

(*g* is acceleration due to gravity and v_1 , v_2 are velocities of fluid). Show that

$$h = \frac{(v_1 - v_2)^2}{2g}$$

- **4** Evaluate $x^2 + x + 41$ for x = 0, 1, 2, 3, 4 and 5. What do your results have in common?
- **5** [electronics] The resonant frequency, f_0 , of a tuned circuit is given by

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

- **a** Evaluate f_0 for $L = 5 \times 10^{-3}$ henry and $C = 1 \times 10^{-6}$ farad.
- **b** If $f_0 = 1000$ Hz and $L = 1 \times 10^{-3}$ henry then determine *C*.

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

6 [electrical principles] The total resistance, R, of two resistors, R_1 and R_2 , in parallel is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Show that

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

7 Example 2 [*electrical principles*] Find the total resistance, *R*, of a circuit consisting of three resistors, $R_1 = 10 \text{ k}\Omega$, $R_2 = 15 \text{ k}\Omega$ and $R_3 = 1.2 \text{ k}\Omega$, connected in parallel. (The total resistance, *R*, is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

8 [aerodynamics] An aircraft's drag, D, at speed ν in a medium of density ρ is given by

$$D = \frac{1}{2}\rho v^2 A C_{\rm D} + \frac{1}{2}\rho v^2 A k C_{\rm L}^2$$

where C_D , C_L are drag coefficients, A is area and k is a constant. Transpose to make v the subject of the formula.

9 [mechanics] The excess energy, *E*, of an engine between the points of maximum speed, v₁, and minimum speed, v₂, is given by

$$E = \frac{1}{2}Iv_1^2 - \frac{1}{2}Iv_2^2$$

where *I* is the moment of inertia. Make *I* the subject of the formula.

10 [*fluid mechanics*] The flow of liquid from location 1 to location 2 can be described by Bernoulli's equation:

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + h_1 = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + h_2$$

Miscellaneous exercise 1 continued

where v is flow velocity, p is pressure, h is height, g is acceleration due to gravity and ρ is density. Make v_1 the subject of the formula.

- **11** Solve the following equations:
 - **a** 5x 1 = 0 **b** 3x + 2 = 8
 - **c** (x-1)(x+2) = 0
 - **d** (3x 1)(2x + 3) = 0
- **12** [*mechanics*] The vertical displacement, *y*, of a projectile in motion is given by

$$y = ut - \frac{1}{2}gt^2$$

where *u* is the initial velocity of the projectile. Find *t* for y = 10 m and u = 14 m/s. (Take g = 9.8 m/s².)

13 [*thermodynamics*] The exit velocity, *u*, of a fluid from a nozzle is given by

$$u = \left\{ \frac{2\gamma P_1 V_1}{\gamma - 1} \left[1 - \frac{P_2 V_2}{P_1 V_1} \right] \right\}^{\frac{1}{2}}$$

where P_1 , V_1 represent the entrance pressure and specific volume respectively and P_2 , V_2 represent the exit pressure and specific volume respectively. γ is the ratio of specific heat capacities. Given that

$$P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$$

show that

$$u^{2} = \frac{2\gamma P_{1}V_{1}}{\gamma - 1} \left[1 - \left(\frac{P_{2}}{P_{1}}\right)^{1 - 1/\gamma} \right]$$

Find *u* (correct to 1 d.p.) given that

 $\gamma = 1.39$, $P_1 = 5.2 \times 10^6 \text{ N/m}^2$, $V_1 = 3.1 \times 10^{-3} \text{ m}^3/\text{kg}$ and $V_2 = 5 \times 10^{-3} \text{ m}^3/\text{kg}$. Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

14 [5] [electrical principles] In an electrical circuit a resistor *R* satisfies

$$R = 1 + \frac{3(9+R)}{12+R}$$

Determine *R*.

15 Solve the following equations:

a
$$x^2 - 7x + 10 = 0$$

- **b** $x^2 1 = 0$
- **c** $2x^2 3x + 1 = 0$
- **d** $15x^2 x 2 = 0$
- **e** $-100x^2 + 400x 300 = 0$
- **16** [dimensional analysis] The following coefficients occur in aerodynamics:

Lift coefficient
$$C_{\rm L} = \frac{L}{PA}$$

Drag coefficient $C_{\rm D} = \frac{D}{PA}$
Moment coefficient $C_{\rm M} = \frac{M}{PA\ell}$

where *L* is the lift (in N), *D* is the drag (in N), *P* is the pressure, *A* is the area, *M* is the moment (in Nm) and *l* is the length. Show that C_L , C_D and C_M are dimensionless.

17 E[*structures*] The deflection, *y*, of a beam of length *L* is given by

$$y = \frac{wx^4}{36EI} - \frac{wLx^3}{8EI} + \frac{wL^4}{36EI}$$

where *w* is the load per unit length, *EI* is the flexural rigidity and *x* is the distance along the beam from one end. Factorize this expression.

18 [structures] The critical load, *P*, of a steel column can be obtained from

$$L\sqrt{\frac{P}{EI}} = n\pi$$

where *L* is the length, *EI* is flexural rigidity and *n* is a positive whole number.

Miscellaneous exercise 1 continued

- i Transpose to make *P* the subject of the formula.
- ii Determine *P* (correct to 2 d.p.) for n = 1, $E = 0.2 \times 10^{12}$ N/m², $I = 6.95 \times 10^{-6}$ m⁴ and L = 1.07 m.
- **19** Solve the following equations:
 - **a** $x^2 + 3x + 1 = 0$
 - **b** $x^2 + 4x + 2 = 0$
 - **c** $5x^2 + 2x 1 = 0$
 - **d** $1 3x 2x^2 = 0$
- **20** $[(\underline{V})]$ [*vibrations*] A constant, *C*, in a vibrational problem is defined as

$$C = \frac{F_0}{k - m\alpha^2} \qquad \left(\alpha \neq \sqrt{k/m}\right)$$

where F_0 is the magnitude of the forcing function, k is the spring stiffness, m is the mass and α is the angular frequency.

If
$$\omega = \sqrt{\frac{k}{m}}$$
 and $r = \frac{\alpha}{\omega}$ then show that

$$C = \frac{F_0/k}{1 - r^2}$$

21 [*electrical principles*] Applying Kirchhoff's law to a circuit gives

$$12(I_1 + I_2) + 67I_2 = 5.794$$

$$3I_1 - 5(I_1 - I_2) = 0.306$$

where I_1 and I_2 represent currents. Determine I_1 and I_2 .

22 $\sum_{v \in V} [fluid mechanics]$ The acoustic velocity, *v*, is given by

$$v = (\gamma k \rho^{\gamma - 1})^{1/2}$$

Using $k\rho^{\gamma} = P$ and $\frac{P}{\rho} = RT$, show that

$$v = \sqrt{\gamma RT}$$

(*k*, *R* are constants, *T* is temperature, *P* is pressure, ρ is density and γ is the specific heat capacity ratio).

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

23 (*fluid mechanics***)** The ratio of depths $\frac{d_2}{d_1} \left(\frac{\text{upstream depth}}{\text{downstream depth}} \right)$ of water flowing through a channel can be derived from

$$d_1^2 - d_2^2 = \frac{2Q}{g} \left(\frac{Q}{d_2} - \frac{Q}{d_1} \right)$$

(d_1 \neq 0, d_2 \neq 0, d_1 \neq d_2)

where *Q* is the flow rate and *g* is acceleration due to gravity. Given that the Froude number, *F*, is defined as

$$F = \frac{Q}{\sqrt{gd_1^3}}$$

show that

$$\frac{d_2}{d_1} = \frac{1}{2} \left[-1 \pm \sqrt{1 + 8F^2} \right]$$

- **24** Solve the following simultaneous equations:
 - **a** 2x + 3y = 5 x + 2y = 3 **b** 3x + 8y = -18 5x + 5y = 25 **c** 3x + 2y = 7x + 5y = 6
- **25** $(\forall \mathbf{y})$ [*vibrations*] The natural frequency, ω , of a flywheel is given by

$$\omega^2 = \frac{JG}{IL}$$

where *I* and *J* are moments of inertia, *G* is shear modulus of elasticity and *L* is length.

If mass *m* is placed at a distance *r* from the centre then the natural frequency, α , of the flywheel becomes

$$\alpha^2 = \frac{JG}{(I+2mr^2)L}$$

From these two formulae, show that

$$I = \frac{2mr^2\alpha^2}{\omega^2 - \alpha^2}$$

Miscellaneous exercise 1 continued

26 [(Ψ) [*vibrations*] When looking at vibrational problems, we often need to solve the quadratic equation

*
$$mx^2 + \zeta x + k = 0$$

where *m* is the mass, ζ is the damping coefficient and *k* is the spring constant. Show that

$$x = \frac{\zeta}{2m} \left(-1 \pm \sqrt{1 - \frac{4mk}{\zeta^2}} \right)$$

For critical damping, we need $b^2 - 4ac = 0$ of the quadratic $ax^2 + bx + c = 0$. For what value of ζ (> 0) in (*) does critical damping occur.

27 $\underset{\text{heat at constant volume } c_{v} \text{ and the specific heat at constant pressure } c_{p} \text{ are related by}$

$$c_{\rm p} - c_{\rm v} = R$$

where *R* is the gas constant. If $k = \frac{C_p}{c_v}$, show that

a
$$c_{\rm v} = \frac{R}{k-1}$$
 b $c_{\rm p} = \frac{Rk}{k-1}$

28 $\underbrace{\ }^{\mathbb{W}} \underbrace{\ }^{\mathbb{W}} [vibrations]$ The four natural frequencies, ω_1 , ω_2 , ω_3 and ω_4 , of a system are given by the roots of the equation

$$\omega^4 - 402\omega^2 + 800 = 0$$

Determine ω_1 , ω_2 , ω_3 and ω_4 .

29 $\underbrace{\llbracket \Psi }$ [*vibrations*] The natural frequencies, ω_1 , ω_2 , ω_3 and ω_4 , of two pendulums connected by a spring can be obtained from the equation

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

$$\omega^4 - 2\left(\frac{g}{\ell} + \frac{kx^2}{m\ell^2}\right)\omega^2 + \frac{g^2}{\ell^2} + \frac{2kx^2\,g}{m\ell^3} = 0$$

where ℓ , *x* are lengths, *m* is mass, *k* is spring stiffness and *g* is acceleration due to gravity. Show that

$$\omega_1 = \sqrt{\frac{g}{\ell}}, \quad \omega_2 = -\omega_1,$$

 $\omega_3 = \sqrt{\frac{g}{\ell} + \frac{2kx^2}{m\ell^2}} \text{ and } \omega_4 = -\omega_3$

$$kL^2 = Z$$

where Z is the zero lift coefficient and k is a constant. The velocity, v, of an aircraft satisfies

$$w = \frac{1}{2}\rho v^2 LA$$

where *w* is weight, ρ is density and *A* is area. Show that

$$v^4 = \left(\frac{2w}{\rho A}\right)^2 \cdot \frac{k}{Z}$$

31 [*structures*] The deflection, *y*, of a beam of length, *L*, is given by

$$EIy = \frac{w(L-x)L}{6} - \frac{w}{6L}(L-x)^3$$

 $[EI \neq 0, w \neq 0]$

where *w* is the load per unit length, *EI* is the flexural rigidity and *x* is the distance along the beam. Determine the value(s) of *x* for which the deflection is zero.

Index

Symbols

dy 260 dx ∂f 696 дх ∂f 696 дv e 157-8 f(x) = 136 $f^{-1}(x) = 139$ f'(x) = 261i 465 j 465 x axis 101 101 *v* axis

А

acceleration 330-2 addition of vectors 569 adjacent 168 adjoint of a matrix 528 algebra 53 subject of formula 54 transposition 54, 56-64 algebraic cube root 60, 61 fraction 80-1 *n*th root 60 square root 60 algebraic applications bending moment 88 Bernoulli's equation 71 current through resistor 55 deflection of beam 74, 79-80 distance of object 92 falling object 84 gas in cylinder 64, 68 impedance 62, 77 kinetic energy 87 lift force 60 period of pendulum 71 power dissipated 57 second moment of area 61 speed of vehicle 56 velocity 57

algebraic fractions 80-1, 396-404 improper 402-4 amp 55 ampere (A) 33 amplitude-phase form 215 analytical techniques 426 angles between vectors 589 important 486 angular motion 332-3 acceleration 333 displacement 332 velocity 332-3 anti-derivative 360, 362 arc 192 area trapezium 106, 427 under a curve 375 under a normal curve 787 Argand, Jean Robert 475 Argand diagram 475 argument of a complex number 476-80 principal 476 arranging 756 Aryabhata 168 asymptote 121 atto (a) 33 augmented matrix 535 auxiliary equation 658 averages 734-5 axes 101

B

base of logarithm 238 beautiful formula 499 binomial 127 binomial application length of cable 349 binomial distribution 762–7 formula 765 mean 774 standard deviation 775 binomial expansion 127–30, 346–7 binomial series 348–50 boundary value problems 665–7 brackets, algebraic 73 BROIDMAS 40–2 BROIDMAS rule in algebra 53–4

С

calculator combinations 759 complex numbers 479 fractions 17, 20, 23 indices 7 mean 734, 742 negative numbers 5 percentages 45 permutations 758 roots 10 sin 171 sinh 247 standard deviation 738, 742 standard form 32 vectors in two dimensions 579 calculus 260 cancelling 17 Cartesian 101 CAST rule 182 Cayley, Arthur 508 chain rule 269-73 applications 274-9 change of base 238 characteristic equation 658 circumference of a circle 192 class boundaries 729 class width 729 classes 728 coefficient 102, 112 equating 402-3 cofactor matrix 526 cofactors 525 column vector 535 combinations 758-60 common logarithms 236–7 complementary function 672 completing the square 114–19 complex conjugate 469-70 complex number applications admittance 471 characteristic impedance 490 current in a circuit 483 impedance 472 primary and secondary currents 484 resultant force 480 transfer function 500 voltage 500

complex numbers 466 addition 466 arithmetic 464–72 division 470-1 division in polar form 482 imaginary part 466 indices 498 multiplication 468 multiplication in polar form 482 polar form 476–80 powers of j = 467-8real part 466 rectangular form 476 subtraction 466 complex plane 475 composite function 150–1 computer algebra system 123-5 constant 53 constant of integration 360 constant of proportionality 626 continuous random variable 777-8 cumulative distribution function 779 probability density function 778 properties 778 conversion of units 38-9 co-ordinate 101 cos 168 graph 178–9 cosecant (cosec) 174-5 cosh 247 graph 248 cosine rule 190 cotangent (cot) 174-5 cube root 9 cubed 7 curve sketching 311-18

D

data continuous 727 discrete 727 de Moivre. Abraham 488 de Moivre's theorem 488-90 de Morgan, Augustus 751 de Morgan's laws 751 decibels 237 decimal number system 24 decimal place 25 decimal point 24 definite integrals 375–83 degree of polynomial 400 degrees to radians 193 denominator 16 dependent variable 101

derivative 258-64 cos function 272 exponential function 272 formulae 266, 275-6 gradient function 260 higher 289 not differentiable 264 second 286-9 sin function 272 using MAPLE 262-3 Derive 123 Descartes. René 101 determinant of a 2×2 matrix 511 determinant of a 3×3 matrix 523 by cofactors 525 differential 368 differential coefficient 368 differential equation 602 family of solutions 604 general solution 603 order 602 particular solution 605 solving by direct integration 603-5 differential equation, linear 658 differentiation applications acceleration of particle 286, 288 bending moment 264 displacement 268 equation of tangent 337 kinematics 330-3 motion of projectile 296 simple harmonic motion 287 voltage across capacitor 278 voltage across inductor 282 differentiation of vectors 590 dimensional homogeneity 71 dimensionless 71 dimensions 70 discrete random variables 761-2 expected value 769-72 properties of expected value 772 variance 772-3 displacement 105 division 5 rules 4 domain 134 double angle formulae 205 dummy variable 364, 383

E

eigenvalue 549 eigenvalues and eigenvectors 548–55 characteristic equation 552 eigenvector 549 general eigenvector 551 elimination 92 equating coefficients 402-3 equation 55-6 of a line 102 linear 56, 100 root 55 solution 55 error in Euler's method 635 in modified method 641 in Runge-Kutta method 648-9 estimation and accuracy 35-6 Euler, Leonard 228, 630 Euler number 73 Euler's formula 499 Euler's improved method 638–44 accuracy 641 formula 639 Heun's formula 639 pole in solution 644 using EXCEL 643 using MAPLE 642 Euler's numerical formula 632 Euler's numerical method 630-6 accuracy 635 using EXCEL 636 using MAPLE 634 even function 110, 165 exa (E) 33 expanding $(a + b)^n$ 129 expansion of brackets 73-7 important 76-7 experimental law 241-5 determination of law using logs 242–5 explicit function 298-9 exponential applications energy of inductor 231 population growth 227 pressure of gas 229 voltage in RC circuit 230 exponential form of complex numbers 497-501 exponential function 227-32 properties 230

F

factorial 340 factorizing important expressions 83–4 quadratic expressions 81–3 simple expressions 78–81 factors 13–15, 78–9 farad (F) 33 femto (f) 33 first order differential equation applications bending moment 604 current in RL circuit 619 displacement 604 draining a tank 624 height of water 607 streamlines of flow 607 temperature at a particular time 626 voltage in RC circuit 613 voltage in RL circuit 617 FOIL 75-6 formulae 53 substitution 59 fourth root 9 fractions 16-23 addition and subtraction 18-20 improper 16 inverting 22 mixed 16 multiplication and division 21-3 proper 16 splitting 397 top-heavy 16 frequency 727 frequency distribution 727-9 frequency polygon 732 Froude number 73 function 134 many-to-one 135 one-to-one 135 function applications displacement of particle 136, 145, 147 failure density function 152 steady-state error 161 transfer function 153 function of two or more variables 695 functions combinations 151-2 composition 150-1 graphs 142-8 limits 156-61 plotting domain 142 plotting inverse 143-4 plotting range 142 fundamental dimensions 69 Fundamental Theorem of Algebra 491

G

Gauss, K.F. 534 Gaussian elimination 534–40 Gaussian elimination process 537 giga (G) 33 gradient 101–4 negative 104 graph applications acceleration of particle 104 displacement of particle 123 extension of spring 102 failure density function 125 frequency and period 120 height of aircraft 118 magnification factor 124 power dissipated 111 streamlines 103, 110 velocity profile 122 velocity-time graphs 105-7 graphical calculator 125 graphs 100 linear 100 plotting 123 quadratic 109-12 greater than 2-3 Greeks 168

Η

half-angle formula 208 heat transfer 556–62 temperature at nodes 557 henry (H) 33 hertz (Hz) 34 histogram 730–1 homogeneous equations 657–61 hyperbolic applications force on an electron 251 transmission line 251 hyperbolic functions 246 fundamental identity 250 properties 249–50 hypotenuse 168

I

identity 114 imaginary axis 475 imaginary part 466 imperial units 39 implicit differentiation 298-301 implicit function 298–9 indefinite integral 360-6 independent event 747 independent variable 101 index 7,66 indices 7-11 laws on complex numbers 498 indices applications gas in a cylinder 224-5 infinite series 339, 348-9 inflexion point 314 inhomogeneous 670 initial value problem 662

integers 6 integrand 360 integrating factor 611–14 integration 360 area 375-8 computer algebra system 439-40 constant 360 definite 375-83 definite by substitution 410-13 formulae table 362-4 important integral 371-3 limits 376 numerical 426 order for by parts formula 390 partial fractions 405-9 by parts 388–95 by parts formula 388 by parts formula definite integral 392 by parts formula twice 394-5 substitution 368-73 suggested substitution 416-19 trigonometric substitution 412–19 using MAPLE 376-8 integration applications average current 439 average power 415 deflection of beam 458 displacement 379 energy of inductor 391, 394 equation of catenary 370 force 432, 449 hazard function 382 height of rocket 437 mechanics 452-4 moment of inertia 380 power in a circuit 381 probability of signal 440 RMS of current 447, 448 specific enthalpy 380 thermodynamics 365 velocity 392, 406 work in thermodynamics 456 intercept 102-4 intersection 746 inverse (multiplicative) 63 inverse cos 173 inverse functions 138-41 inverse matrix (2×2) 512–15 inverse matrix (3×3) 528 inverse sin 173 inverse tan 173 inverse trigonometric functions 173-4 irrational numbers 27-8 iterations 351, 630

J joule (J) 34

K

kelvin (K) 34 kilo (k) 33 kilogram (kg) 33 kinematics 330–3 Kirchhoff's voltage law 616 Kutta, Martin 645

L

Lambert 247 Laplace's equation 702 laws of indices 66 less than 2-3 Liebniz 260 like terms 74 limits algebra 160-1 limits of functions 156-61 linear equations 56, 100, 541-8 inconsistent equations 542 properties 545 system 541 local maximum 308 local minimum 308 logarithmic applications current gain 234 electronic device 243 gas in a cylinder 244 power gain 237 velocity of vehicle 236 logarithmic differentiation 302-4 logarithmic function 233–9 change of base 238 common logarithm 236-7 logarithmic laws 235 natural logarithm 233-6 tables 234 logarithmic graphs 242–5 lottery 759 lower class boundary 729 lowest common multiple (LCM) 12-15

M

Mach number 73 Maclaurin, Colin 341 Maclaurin series 339–45 of functions 344 limits of functions 344–5 using MAPLE 342–3 MAPLE 123–4 Mathcad 123 Matlab 123 matrices addition 509 identity (2×2) 512 identity (3×3) 530 inverse (2×2) 512–15 inverse (3×3) 528 matrix multiplication 509-11 scalar multiplication 509 square 508 subtraction 509 matrix applications acceleration in a pulley system 538 controllability matrix 519 currents in a circuit 516, 530, 539 heat transfer 556-62 natural vibrations 552 observability matrix 519 solving equations 516-19 system poles 520 using MAPLE 561-2 matrix multiplication 509-11 maximum 118, 308 first derivative test 326 second derivative test 310 maximum and minimum applications energy absorbed by a resistor 316 maximum value of current 313 maximum volume 320 minimum power dissipated 323 minimum surface area 321 sketch graphs 311–14 mean 734 of frequency distribution 740 median 735 mega (M) 33 metre (m) 33 micro (µ) 33 milli (m) 33 minimum 118, 308 first derivative test 327 second derivative test 310 minor 524 mode 735 modulus function 163-4 sketch 164 modulus of a complex number 476 - 80multiple-angle formula 208 multiples 12-15 multiplication 5 rules 4 mutually exclusive events 750

Ν

nano (n) 33 Napier, John 233 natural logarithm 233-6 negative numbers 2-6, 8 Newton 260 newton (N) 34 Newton's law of cooling 626–7 Newton-Raphson 352 Newton-Raphson application time taken for zero velocity 354 non-homogeneous equations 670-2 normal distribution 786–92 787 area standard normal distribution 787 table 821 use of table 787, 792 normal distribution curve 786 normal equation 335-8 gradient 335 not equal (\neq) 76 numerator 16 numerical integration 426 experimental data 426 numerical methods 351, 426, 630 Euler 632 fourth order Runge–Kutta 646 modified Euler 639 Newton-Raphson 352 Simpson 434 trapezium 428 numerical solution of equations 351-5 Newton-Raphson 352

0

odd function 165 ohm (Ω) 33 Ohm's law 616 opposite 168 optimization problems 320–4 engineering 323–4 maximizing 320 minimizing 320 partial differentiation 719–21 order of operations 40–2 ordinates 428, 434 origin 101

Р

parameter 291 parametric differentiation 291–6 applications 296 parametric equations 291–2 plotting with MAPLE 292 partial derivatives 695-704 higher derivatives 699-700 maximum 716–19 minimum 716-19 mixed derivatives 700-4 notation 696 plotting with MAPLE 714-17 product rule 701 quotient rule 701 saddle point 716–19 stationary points 714-15 partial derivatives applications coefficient of rigidity 710 head loss in a pipeline 709 ideal gas equation 698, 712 Laplace's equation 702 minimize surface area 719 power in a circuit 707 pressure of gas 697 resistance of wire 699 second moment of area 697 partial fractions 397-402 identity 398 improper 402-4 integration of 405-9 particular integrals 672-80 particular solutions non-homogeneous equations 683-8 pascal (Pa) 34 Pascal, Blaise 128 Pascal's triangle 127–30 percentage error 46, 430 percentages 43-6 converting to fractions 44 permutations 756-8 peta (P) 33 pico (p) 33 place sign 525 point of inflexion general 314 horizontal 308, 315-18 Poisson. Simeon-Denis 774 Poisson distribution 774–5 formula 774 mean 775 variance 775 polar form of a complex number 476-80 polynomial 400 cubic 400 degree 400 linear 400 quadratic 400 quartic 400

positive numbers 2–6 power 7,66 prime 13 prime decomposition 13 prime factors 13-15 probability 745 and rule 747 least rule 752 not rule 747 or rule 750 probability applications component failing 779 failure density function 778 failure distribution function 780 hazard function 781 mean time to failure 782 reliability engineering 778-80 reliability functions 780-4 probability density function 761 probability distribution 764 product rule 280-3 Pythagoras 169

Q

quadratic 81 quadratic equations 86–9 solving by factorizing 86–8 solving by formula 88–9 quotient rule 283–4

R

radians 193, 497 radians to degrees 194 radius of a circle 192 random variable 761 range 134 Raphson, Joseph 351 ratios 48-50 real axis 475 real numbers 6 real part 466 rectangular form of a complex number 476 removing brackets 73-4 resultant force 480 Reynolds number 73 right-angled triangle 168 root mean square (RMS) 445-50 roots 8 properties of roots 10–11 roots of a complex number 491-6 on a circle 493-5 rules of indices 66-8 Runge, Carle 645

Runge–Kutta, fourth order 645–50 accuracy 648–9 comparison graph 650 formula 646 using MAPLE 649

S

saddle point 716-19 scalar 568 scalar products 586-9 definition 587 formula 587 properties 587 secant (sec) 174-5 second (s) 33 second order differential equation 657 auxiliary equation 658 characteristic equation 658 general solution 658 particular homogeneous solutions 662-3 particular solution 662 standard form 661 trivial solution 659 second order differential equation applications compression of buffer 683 critical load 666 current in a circuit 663. 676 current in RLC circuit 685 deflection of column 687 motion of spring-mass system 665 undamped spring-mass system 677 separable equation 605 separating variables 605-8 series 338-45 Maclaurin 339-45 SI units 32-5 significant figures 26 simple harmonic motion 287, 664 simplify 67 Simpson, Thomas 434 Simpson's rule 434-40 application 438 quadratic curves 435 simultaneous equations 90-3 simultaneous equations by matrices 516–19 sin 168 sin graph 178-9 sine rule 187-9 ambiguous case 188-9 sinh 246 graph 248 sketching quadratics 117–19 slide rule 234 small changes 706–7

solution infinite number 543 no solution 544 trivial 545 unique 541 spreadsheet 636 square root 8 properties 10-11 squared 7 squared deviations 736 squashed vertically 146 standard derivatives 275-6 standard deviation 736-40 of a frequency distribution 740 standard form 28-32 standard frequency 731 standard integrals 362-4 standard width 731 stationary points 308-11, 326-7 step size 632 streamlines 607 stretched vertically 146

Т

tan 168 graph 178–9 tangent equation 335-8 gradient 335 tanh 247 graph 248 Taylor series 341 tera (T) 33 three-dimensional co-ordinate system 696 time constant 230 tolerance limits 706 Torricelli's law 623-6 total differential 711–12 transformation of graphs 144-8 transient term 620, 627 transpose of a matrix 528 trapezium rule 426-32 trial function 672 adjusting trial function 679 table of trial functions 675 trigonometric applications amplitude-phase form 215 crane 188 crank mechanism 190 current waveform 201 extension of spring 218 power in a circuit 210 sketch 217 time flight of projectile 210

trigonometric equations 181-6general solution of $\cos(x) = R$ 185 general solution of $\sin(x) = R$ 184 general solution of $\tan(x) = R$ 185 general solutions 184-6particular solutions 181-3trigonometric functions 168-75trigonometric identities 203-8fundamental identities 208important 206trigonometric ratios 168trigonometric ratios 168

U

union 746 units 70 upper class boundary 729

V

variables 53 variance 737 vector 568 addition 569 free vectors 569 magnitude 568 moment vector (torque) 596 resultant 569 scalar multiplication 571-2 subtraction 570 zero vector 571 vector applications angle between vectors 589 moment vector 596-7 projectile 577 resultant force 572, 577, 578, 582 resultant velocity 573 velocity and acceleration 591 work done 586

vector products 593-7 definition 593 determinant 595 properties 593 unit vectors 594 vectors in three dimensions 581–5 addition 581 i, j and k notation 581 magnitude 582 unit vectors 583-5 vectors in two dimensions 576–9 addition 577 i and j notation 576 magnitude 578 unit vectors 576 velocity 330-2 velocity-time graphs 105-7 Venn diagrams 746 volt (V) 33 voltage across capacitor 617 voltage across inductor 616

W

watt (W) 34 waves 195–201 amplitude 197–8 angular velocity 197 cosine wave 195 frequency 196–8 lags 200 leads 200 period 196–8 phase 198–201 sine wave 195 time displacement 198–201 Weber number 73

Х

 \dot{x} (time derivative) 260