Contents

Note to the Reader vii
Preface ix
INTRODUCTION Arithmetic for Engineers 1

- Whole numbers 2
- Indices 7
- Numbers 12
- Fractions 16
- Arithmetic of fractions 18
- Decimals 24
- Powers of 10 28
- Conversion 38
- Arithmetical operations 40
- Percentages 43
- Ratios 48
1 Engineering Formulae 52
- Substitution and transposition 53
- Transposing engineering formulae 59
- Indices 66
- Dimensional analysis 69
- Expansion of brackets 73
- Factorization 78
- Quadratic equations 86
- Simultaneous equations 90
2 Visualizing Engineering Formulae 99
- Graphs 100
- Applications of graphs 105
- Quadratic graphs 109
- Quadratics revisited 114
- Further graphs 120
- Binomial expansion 127
3 Functions in Engineering 133
- Concepts of functions 134
- Inverse functions 138
- Graphs of functions 142
- Combinations of functions 150
- Limits of functions 156
- Modulus function 163
4 Trigonometry and Waveforms 167
- Trigonometric functions 168
- Angles and graphs 177
- Trigonometric equations 181
- Trigonometric rules 187
- Radians 192
- Wave theory 195
- Trigonometric identities 203
- Applications of identities 209
- Conversion 213
5 Logarithmic, Exponential and Hyperbolic Functions 223
- Indices revisited 224
- The exponential function 227
- The logarithmic function 233
- Applications of logarithms 241
- Hyperbolic functions 246
6 Differentiation 257
- The derivative 258
- Derivatives of functions 265
- Chain rule revisited 274
- Product and quotient rules 280
- Higher derivatives 286
- Parametric differentiation 291
- Implicit and logarithmic differentiation 298
7 Engineering Applications of Differentiation 307
- Curve sketching 308
- Optimization problems 320
- First derivative test 326
- Applications to kinematics 330
- Tangents and normals 335
- Series expansion 338
- Binomial revisited 346
- Numerical solution of equations 351
8 Integration 359
- Integrals 360
- Integration by substitution 368
- Definite integrals 375
- Integration by parts 388
- Algebraic fractions 396
- Integration of algebraic fractions 405
- Integration by substitution revisited ${ }^{\prime}$ 410
- Trigonometric techniques for integration 414
9 Engineering Applications of Integration 425
- Trapezium rule 426
- Further numerical integration 434
- Engineering applications 442
- Applications in mechanics 452
- Miscellaneous applications of integration 456
10 Complex Numbers 463
- Arithmetic of complex numbers 464
- Representation of complex numbers 475
- Multiplication and division in polar form 482
- Powers and roots of complex numbers 488
- Exponential form of complex numbers 497
11 Matrices 507
- Manipulation of matrices 508
- Applications 516
- 3×3 matrices 522
- Gaussian elimination 534
- Linear equations 541
- Eigenvalues and eigenvectors 548
- Applications in heat transfer 556
12 Vectors 567
- Vector representation 568
- Vectors in Cartesian co-ordinates 576
- Three-dimensional vectors 581
- Scalar products 586
- Vector products 593
13 First Order Differential Equations 601
- Solving differential equations 602
- Using the integrating factor 611
- Applications to electrical principles 616
- Further engineering applications 623
- Euler's numerical method 630
- Improved Euler's method 638
- Fourth order Runge-Kutta 645
14 Second Order Linear Differential Equations 656
- Homogeneous differential equations 657
- Engineering applications 662
- Non-homogeneous (inhomogeneous) differential equations 670
- Particular solutions 683
15 Partial Differentiation 694
- Partial derivatives 695
- Applications 706
- Optimization 714
16 Probability and Statistics 726
- Data representation 727
- Data summaries 734
- Probability rules 745
- Permutations and combinations 756
- Binomial distribution 761
- Properties of discrete random variables 769
- Applications of continuous random variables 777
- Normal distribution 786
Solutions 797
Appendix: Standard Normal Distribution Table 821
Index 822

Engineering Formulae

SECTION A Substitution and transposition 53

- Evaluate formulae
- Solve equations

SECTION B Transposing engineering formulae
 59

- Transpose and evaluate formulae

SECTION C Indices 66

- Use the laws of indices to simplify expressions

SECTION D Dimensional analysis 69

- Check equations which involve physical quantities

SECTION E Expansion of brackets 73

- Expand brackets

SECTION F Factorization 78

- Factorize simple expressions
- Factorize quadratic expressions

SECTION G Quadratic equations 86

- Solve quadratic equations by factorization
- Solve quadratic equations by formula

SECTION H Simultaneous equations 90

- Solve linear simultaneous equations

In this chapter we look at the applications of basic algebra to engineering problems.
The word algebra comes from the Arabic 'al-jabr' which occurs in Al-Khwarizmi's book 'Hisab al-jabr w'al-muqabala' written in the early ninth century. Al-jabr means restoration (or transpose to remove the negative quantities of an equation, e.g. $3 x+1=8-4 x$ goes to $7 x+1=8$). Al-Khwarizmi (780-850 AD) was born in Khwarizm, now called Khiva, a town located in Uzbekistan (a former Soviet republic which became independent in 1991).

SECTION A Substitution and transposition

By the end of this section you will be able to:

- evaluate formulae using BROIDMAS
- solve equations
- transpose formulae

A1 Evaluating formulae

A formula is a general rule or law of mathematics. The plural of formula is formulae.
In evaluating formulae, the mnemonic BROIDMAS gives the order of operation (see Introductory chapter):

Brackets
ROots
Indices
Division
Multiplication
Addition
Subtraction
\} First

Second $\}$ Third $\}$ Last

It's imperative that you understand BROIDMAS because it tells us the rules of algebra and is used for evaluating and simplifying algebraic expressions. Moreover it can be useful for typing in an expression into a computer algebra package or a calculator.
In algebra, letters or symbols are used to represent numbers. These letters or symbols may be constants, that is fixed, or variables, which means they can take up various values.

No space between letters represents multiplication, for example

$$
a b=a \times b=a \cdot b
$$

So if $a=3$ and $b=7$ then $a b=3 \times 7=21$. To evaluate a formula we substitute the given
numbers in place of letters and then apply BROIDMAS to evaluate the arithmetical expression as in the Introductory chapter.
For example, evaluate $a(b+c)+\frac{c(a+b)^{2}}{b}$ where $a=2, b=3$ and $c=5$:

$$
\begin{aligned}
2(3+5)+\frac{5(2+3)^{2}}{3} & =(2 \times 8)+\left(\frac{5 \times 5^{2}}{3}\right) \\
& =16+\left(\frac{5 \times 25}{3}\right) \\
& =16+\frac{125}{3} \\
& =57 \frac{2}{3}
\end{aligned}
$$

Example 1

Pythagoras theorem gives the length of the longest side, c, in terms of the other two sides of a right-angled triangle, a and b, as

$$
c=\sqrt{a^{2}+b^{2}}
$$

Evaluate c for $a=5$ and $b=12$.

Solution

Substituting $a=5$ and $b=12$ into $c=\sqrt{a^{2}+b^{2}}$ gives

$$
\begin{aligned}
c & =\sqrt{5^{2}+12^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169}=13
\end{aligned}
$$

Hence $c=13$.

A2 Transposition of formulae

In the formula $v=u+a t$, we say v is the subject of the formula. If we want to make t the subject of the formula then we need to change the form to

$$
t=\square
$$

This process of changing the subject is called transposition of formulae.
When transposing we can

- add, subtract, multiply or divide by the same quantities on both sides of the formula (though we cannot divide by zero)

A3 Transposition applied to equations

An equation is a mathematical statement that says two expressions are equal. For example

$$
x-3=7
$$

is an equation where x is a unknown variable. To solve this equation means we need to find the value (or values) of x so that

> Left-Hand Side = Right-Hand Side

Hence we need to make x the subject of $x-3=7$. That is we need to remove the 3 on the Left-Hand Side. How?

Add 3 . We need to add 3 to both sides because we have to maintain the balance of the equation:

$$
\begin{aligned}
x-3+3 & =7+3 \\
x-0 & =10 \\
x & =10
\end{aligned}
$$

In this case $x=10$ is a solution, or a root, of the above equation. The process of finding the value of x is the same as transposition of formulae. Let's try some examples in the field of electrical principles and mechanics.

Example 2 electrical principles

If the voltage, V, across a resistor $R=100 \Omega$ is 10 volts, find the current I through the resistor, given that $V=I R$.

Solution

Substituting $V=10$ and $R=100$ into $V=I R$ gives

$$
10=100 I
$$

What are we trying to find?
The value of I. How do we find I ?
Divide both sides by 100 :

$$
\frac{100 I}{100}=\frac{10}{100}
$$

Cancelling the 100's on the Left-Hand Side:

$$
I=\frac{10}{100}=0.1 \mathrm{amp}(\mathrm{~A})
$$

The unit for current is amp and will generally be denoted by A .
As a check you can substitute $I=0.1$ into $10=100 I$, thus $10=100 \times 0.1$.

Example 3 mechanics

A vehicle's speed, v, is given by

$$
v=14+5 t
$$

where t is time. Find the time taken in seconds to reach a speed of $23 \mathrm{~m} / \mathrm{s}$.

Solution

Substituting $v=23$ gives

$$
14+5 t=23
$$

We need to find t. How?
Subtract 14 from both sides:

$$
5 t=23-14=9
$$

How do we remove the 5 from the Left-Hand Side?
Divide both sides by 5 :

$$
\frac{5 t}{5}=\frac{9}{5}
$$

Cancelling 5's on the Left-Hand Side gives:

$$
t=\frac{9}{5}=1.8 \mathrm{~s}
$$

We use SI units throughout the book - see the Introductory chapter. For example, velocity is given in m / s, acceleration in $\mathrm{m} / \mathrm{s}^{2}$, time in s , etc.
The above equations, $14+5 t=23$ and $100 I=10$, are examples of linear equations.

A4 Transposition applied to engineering formula

Algebraic expressions can be simplified by adding, subtracting or cancelling like terms, for example

$$
x+x=2 x, \quad x-x=0, \quad x+5 x=6 x \quad \text { and } \quad \frac{x}{x}=1 \quad[\operatorname{provided} x \neq 0]
$$

We can only add and subtract like terms. We cannot simplify the following:

$$
x+y=x+y, x-y=x-y, x+5 y=x+5 y \quad \text { and } \quad \frac{x}{y}=\frac{x}{y}
$$

The procedure in applying transposition to formulae is very similar to that used in solving equations. Let's try some engineering examples.

Example 4 electronics

The power, P, dissipated in a circuit is given by

$$
P=I V
$$

where I is current and V is voltage. Transpose the formula for V.

Solution

We want to get $V=---$. How can we achieve this from $\boldsymbol{P}=\boldsymbol{I} \boldsymbol{V}$?
We need to remove I from the Right-Hand Side (RHS). How?
Divide both sides by I. Thus

$$
\begin{aligned}
& \frac{P}{I}=\frac{I V}{I} \quad \text { [the } I \text { 's on the RHS cancel out] } \\
& \frac{P}{I}=V \text { or } V=\frac{P}{I}
\end{aligned}
$$

In Example 4, how do we know that we need to divide both sides by I ?
The subject that we want to obtain is V.
What does the formula $P=I V$ do to V ?
It is multiplied by I.
? We want to remove the I and find V on its own. How can we remove I ?
We can divide by I.
One way of obtaining the subject in many cases is to see what the formula does to the subject and then do the opposite on the other side. In Example 4 the subject (V) is multiplied by I so we need to divide the other side by I, thus obtaining $V=\frac{P}{I}$.

Example 5 mechanics

The velocity, v, of an object with an initial velocity u and constant acceleration a after time t is given by

$$
v=u+a t
$$

Transpose to make t the subject of the formula.

Solution

We need to get from $v=u+$ at to $t=-\quad-$

Example 5 continued

We need to remove the \boldsymbol{u} first. How?
Subtract u from both sides:

$$
\begin{aligned}
v-u & =(u+a t)-u \\
& =\underbrace{u-u}_{=0}+a t \\
v-u & =a t
\end{aligned}
$$

How can we obtain t from $v-u=a t$?
Divide both sides by a :

$$
\frac{v-u}{a}=\frac{a t}{a}
$$

The a 's on the Right-Hand Side cancel out to give

$$
t=\frac{v-u}{a}
$$

We will assume that the variable we are dividing by is not zero because we cannot divide by zero. So in Example 5, a is not zero.

SUMMARY

In evaluating the formula we use the mnemonic BROIDMAS: \underline{B} rackets, $\underline{\text { ROots, } \underline{I} \text { Indices, }}$ Division, Multiplication, Addition, Subtraction.

We can transpose a formula to make a certain variable the subject of the formula. Transposing involves arithmetical operations carried out on both sides of the formula. We use transposition to solve equations.

Exercise 1(a)

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

1 Given that

$$
c=\sqrt{a^{2}+b^{2}}
$$

evaluate c for $a=24$ and $b=7$.
2 䖪 [electrical principles] If the voltage, V, across a resistor $R=1000 \Omega$ is 15 V , then find the current I given that

$$
V=I R .
$$

3 [thermodynamics] A gas is expanded from an initial pressure P_{1} and volume V_{1} of $5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ and $2 \times 10^{-4} \mathrm{~m}^{3}$
respectively, to a final pressure
$P_{2}=2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$. Find the new volume V_{2} given that $P_{1} V_{1}=P_{2} V_{2}$.

4 [thermodynamics] A gas has pressure $P=5.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, volume $V=0.015 \mathrm{~m}^{3}$ and is at a temperature $T=312 \mathrm{~K}$. If there are $n=34.6$ mole of gas, determine the mass, m, given that

$$
P V=n m R T
$$

where $R=8.31 \mathrm{~J} /(\mathrm{K}$ mole) (R is called the universal or molar gas constant).

Exercise 1（a）continued

5 ［mechanics］The distance，s ， travelled in time t is related by

$$
s=u t+\frac{1}{2} a t^{2}
$$

where u is the initial velocity and a is constant acceleration．Determine a ， given that $s=30 \mathrm{~m}, u=2 \mathrm{~m} / \mathrm{s}$ and $t=5 \mathrm{~s}$ ．

6 强发［electrical principles］The resistance， R ，of a wire at $t^{\circ} \mathrm{C}$ is given by

$$
R=R_{0}(1+\alpha t)
$$

where R_{0} is the resistance at $0^{\circ} \mathrm{C}$ and α is the temperature coefficient of resistance． Determine α ，given that $R_{0}=33 \Omega$ ， $R=35 \Omega$ and $t=89^{\circ} \mathrm{C}$ ．（The units of α are $/{ }^{\circ} \mathrm{C}$ ．）
7 踄［electrical principles］A battery with e．m．f．$E=12 \mathrm{~V}$ and an internal resistance $r=1 \Omega$ is connected across a resistor $R=20 \Omega$ ．Find the voltage V across R ，given that

$$
E=\frac{V(R+r)}{R}
$$

8
คि़［mechanics］The velocity，v ，of an object is given by

$$
v=u+a t
$$

Solutions at end of book．Complete solutions available at www．palgrave．com／science／engineering／singh

B1 Formulae involving roots

As discussed in the Introductory chapter, the square root and the nth root are denoted by $\sqrt{ }$ and $\sqrt[n]{\text { respectively. We can write these as }}$
1.1
$\sqrt{a}=a^{1 / 2}$
[square root]
1.2
$\sqrt[n]{a}=a^{1 / n} \quad[n$th root $]$

For example

$$
\begin{aligned}
& \sqrt{49}=7(\text { positive square root }) \\
& \sqrt[3]{8}=2\left(\text { because } 2 \times 2 \times 2=8 \quad \text { or } \quad 2^{3}=8 ; \sqrt[3]{ } \text { denotes the cube root }\right)
\end{aligned}
$$

? What is $8^{1 / 3}$ and $256^{1 / 4}$ equal to?

$$
\begin{aligned}
& 8^{1 / 3}=\sqrt[3]{8}=2 \\
& 256^{1 / 4}=4(\text { because } 4 \times 4 \times 4 \times 4=256)
\end{aligned}
$$

Now let's take a look at roots where letters represent variables.
We also have:

$$
\begin{aligned}
& \sqrt{a^{2}}=(\sqrt{a})^{2}=a \\
& \sqrt[n]{a^{n}}=(\sqrt[n]{a})^{n}=a
\end{aligned}
$$

(These can be shown by using the rules of indices which are explored in the next section.)

Example 6 aerodynamics
The lift force, L, on an aircraft is given by

$$
L=\frac{1}{2} \rho v^{2} A C
$$

where ρ is density, v is speed, A is area and C is lift coefficient. Make v the subject of the formula.

Solution
How can we get $v=--\quad$?
We can first find v^{2} and then take the square root of both sides.
How do we get $v^{2}=-\quad-$?
First we need to remove the $\frac{1}{2}$. How?
Multiply both sides by 2: $\quad 2 L=\rho v^{2} A C$
Next we need to remove $\rho A C$ from the Right-Hand Side. How?
Divide through by $\rho A C$:

$$
\frac{2 L}{\rho A C}=v^{2}
$$

Example 6 continued
How can we find \boldsymbol{v} ?
Take the square root of both sides (because $\sqrt{v^{2}}=v$):

$$
\begin{aligned}
& \sqrt{v^{2}}=\sqrt{\frac{2 L}{\rho A C}} \\
& v=\sqrt{\frac{2 L}{\rho A C}} \text { which we may write as } \underbrace{\left(\frac{2 L}{\rho A C}\right)^{1 / 2}}_{\text {by } 1.1}
\end{aligned}
$$

In the last line where we say 'by 1.1 ' means the result follows by this reference quoted earlier and repeated at the bottom of this page.

We adopt this approach of quoting a reference number throughout the book and the formula itself will either be in the main text or on the bottom of the page below a horizontal line so that you do not need to flick over pages to find the reference.

Example 7 materials

The second moment of area, I, of a rectangle of height h and breadth b is given by

$$
I=\frac{1}{12} b h^{3}
$$

Make h the subject of the formula.

Solution

First we need to remove $\frac{1}{12}$ from the Right-Hand Side. How?
Multiply both sides by $12: \quad 12 I=b h^{3}$
? By what means can we find \boldsymbol{h} ?
We can initially obtain h^{3} and then find h. So divide both sides by b :

$$
\frac{12 I}{b}=h^{3}
$$

and now take the cube root, $(\sqrt[3]{ })$, of both sides:

$$
\sqrt[3]{\frac{12 I}{b}}=h\left(\text { because } \sqrt[3]{h^{3}}=h\right)
$$

or

$$
\underset{\text { by } 1.2}{h \equiv}\left(\frac{12 I}{b}\right)^{1 / 3}
$$

As discussed in the Introductory chapter, in many engineering examples it is sufficient to give your final answer to the smallest number of significant figures consistent with the data. The intermediate working has to be one more decimal point (d.p.) or significant figure (s.f.) than is needed. Thus in order to give your final answer to 1 d.p. (or 1 s.f.) you need to work to 2 d.p. (or 2 s.f.).

In the next example we use substitution and transposition of formulae to evaluate the capacitance, C. It is more difficult than the above examples.

Example 8 electronics

The impedance, Z, of a circuit containing a resistor R, capacitor C and inductor L is given by

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

where $X_{L}=2 \pi f L$ and $X_{C}=\frac{1}{2 \pi f C} \quad$ (f represents frequency).
Determine C if $R=100 \Omega, Z=104 \Omega, L=0.1$ henry and $f=50 \mathrm{~Hz}$.

Solution

Substituting $f=50$ and $L=0.1$ into $X_{L}=2 \pi f L$ gives

$$
X_{L}=2 \pi \times 50 \times 0.1=10 \pi
$$

Substituting $X_{L}=10 \pi, Z=104$ and $R=100$ into the given formula, $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$, results in

$$
104=\sqrt{100^{2}+\left(10 \pi-X_{C}\right)^{2}}
$$

What are we trying to find?

We need to determine C but first we find X_{C} and then obtain C.
Squaring both sides gives

$$
104^{2}=100^{2}+\left(10 \pi-X_{C}\right)^{2}
$$

Transposing

$$
104^{2}-100^{2}=816=\left(10 \pi-X_{C}\right)^{2}
$$

We have

$$
\left(10 \pi-X_{C}\right)^{2}=816
$$

Taking square root of both sides:

$$
10 \pi-X_{C}=\sqrt{816}=28.566
$$

Hence $\quad X_{C}=10 \pi-28.566=2.850$
Since $X_{C}=\frac{1}{2 \pi f C}$ we have

$$
\frac{1}{2 \pi f C}=2.850
$$

Example 8 continued

Transposing

$$
\begin{aligned}
C & =\frac{1}{2 \pi f \times 2.85} \\
& =\frac{1}{\text { rbstituting }} \begin{array}{l}
f=50 \times 2.85
\end{array}=0.0011
\end{aligned}
$$

Hence $C=0.0011$ farad or 1.1×10^{-3} farad $=1.1$ millifarad (mF). Remember that the prefix milli, m, represents 10^{-3}.

B2 Formulae involving the inverse

The multiplicative inverse of $x(\neq 0)$ is denoted by x^{-1} and defined as
1.3

$$
x^{-1}=\frac{1}{x}(=1 \div x)
$$

Example 9

Show that

$$
\left(\frac{a}{b}\right)^{-1}=\frac{b}{a} \quad(a \neq 0, b \neq 0)
$$

Solution
We have

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{-1} & =\frac{1}{\left(\frac{a}{b}\right)}\left[\text { by (1.3) with } x=\frac{a}{b}\right] \\
& =1 \div \frac{a}{b} \\
& =1 \times \frac{b}{a}=\frac{b}{a}
\end{aligned}
$$

Remember $1 \div \frac{a}{b}=1 \times \frac{b}{a}$ because when we divide fractions we turn the second fraction upside down and multiply.

We give this important result a reference number:
$1.4 \quad\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$
We also have $\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}}$, but more of this in the next section.

Example 10 thermodynamics

A gas in a cylinder in state 1 with pressure P_{1}, temperature T_{1} and volume V_{1} expands to state 2 with pressure P_{2}, temperature T_{2} and volume V_{2}. A formula relating these variables is given by $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$. Make T_{1} the subject of the formula.

Solution
From $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$ we need $T_{1}=---$. Taking the inverse, ($)^{-1}$, of both sides gives

$$
\begin{aligned}
\left(\frac{P_{1} V_{1}}{T_{1}}\right)^{-1} & =\left(\frac{P_{2} V_{2}}{T_{2}}\right)^{-1} \\
\frac{T_{1}}{P_{1} V_{1}} & =\frac{T_{2}}{P_{2} V_{2}} \quad[\text { by } 1.4]
\end{aligned}
$$

How can we find $T_{1}=--\quad$?
Multiply both sides by $P_{1} V_{1}$:

$$
T_{1}=\frac{P_{1} V_{1} T_{2}}{P_{2} V_{2}}
$$

S UMMARY

The square root, $\sqrt{ }$, and the nth root, $\sqrt[n]{ }$, are defined as
$1.1 \quad \sqrt{a}=a^{1 / 2}$
$1.2 \quad \sqrt[n]{a}=a^{1 / n}$
The inverse of $x(\neq 0)$ is defined as
$1.3 \quad x^{-1}=\frac{1}{x}$
$1.4 \quad\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}(a \neq 0, b \neq 0)$
It is well worth spending some time learning these, 1.1 to 1.4 , because they are used throughout the book.

Exercise 1（b）

1
둔․［［electrical principles］The power P dissipated in a resistor of resistance R is given by

$$
P=\frac{V^{2}}{R} \quad[V \text { is voltage }]
$$

Make V the subject of the formula．
2 国［acoustics］The speed，c ，of sound in air is given by

$$
c=\sqrt{\frac{\gamma P}{\rho}}
$$

where γ is the specific heat ratio，P is the pressure and ρ is the density．Make P the subject of the formula．

3
［mechanics］The airflow over a vehicle causes drag D ，which is given by

$$
D=\frac{1}{2} \rho C v^{2} A
$$

where ρ is density，C is drag coefficient， v is velocity and A is the frontal area of the vehicle．Make A the subject of the formula．
4 茄品［electrical principles］Evaluate the total resistance，R ，in a circuit containing two resistors in parallel，$R_{1}=100 \Omega$ and $R_{2}=270 \Omega$ ，where

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

（ Ω is the SI unit ohm used to measure electrical resistance）．

5 ［mechanics］The time，T ，taken for a pendulum to make a complete swing is given by

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

where $l=$ length of pendulum and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ ．Determine l ，if $T=0.5 \mathrm{~s}$ ．

Solutions at end of book．Complete solutions available at www．palgrave．com／science／engineering／singh
［electronics］The impedance，Z ， of a circuit containing a resistor R ， capacitor C and inductor L is given by

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

where $X_{L}=2 \pi f L$ and $X_{C}=\frac{1}{2 \pi f C}$ （ f represents frequency）．

Determine C if $R=50 \Omega, Z=100 \Omega$ ， $L=1$ henry and $f=50 \mathrm{~Hz}$ ． ［aerodynamics］The power，P ， required to drive an air screw of diameter D is given by

$$
P=2 \pi k \rho h^{3} D^{5}
$$

（ $k=$ torque coefficient，$\rho=$ density， $n=$ number of revolutions per second）． Make D the subject of the formula．

8 ［electronics］A system with feedback β and gain A has an input voltage $v_{\text {in }}$ given by

$$
v_{\mathrm{in}}=\left(\frac{1}{A}-\beta\right) v_{\mathrm{out}}
$$

（ $v_{\text {out }}=$ output voltage）．Show that

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{A}{1-A \beta}
$$

9 ［materials］A cylinder of radius r is subject to a torque T at each end，which causes it to twist．The shear stress τ is given by

$$
\tau=\frac{T}{\frac{1}{2} \pi r^{3}}
$$

Make r the subject of the formula．
10 The following formulae occur in various engineering fields．Make the letter in the square brackets the subject of the formula．
a $V=\frac{E R}{R+r}$
b $v^{2}=u^{2}+2 a s$
c $v=\left(\frac{K+4 a / 3}{\rho}\right)^{1 / 2}$

Exercise 1(b) continued

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh
d $\eta=\frac{\pi P r^{4} t}{8 v L}$
[r]
e $T=2 \pi \sqrt{\frac{l}{g}}$
f $R T=\left(P+\frac{a}{V^{2}}\right)(V-b)$

SECTION C Indices

By the end of this section you will be able to:

- use the laws of indices to simplify expressions
- use the laws of indices in applications of thermodynamics

? Do you remember what 3^{5} represents?

It is $\underbrace{3 \times 3 \times 3 \times 3 \times 3}_{5 \text { copies }}$ which is equal to 243 .
The 5 in 3^{5} is called the index or the power. The plural of index is indices. In this section we will predominantly apply the rules of indices to letters rather than numbers.
The topic of indices is very important for engineers but many students do find this a difficult topic - invariably because they don't know the rules well enough.

C1 Some rules of indices

We have already stated some rules of indices in the last section, 1.1 to $\quad 1.4$. Other important rules of indices are

$$
a^{m} a^{n}=a^{m+n}
$$

1.6

$$
a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n} \quad(a \neq 0)
$$

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

1.8

$$
a^{0}=1 \quad(a \neq 0)
$$

1.10

$$
a^{1}=a
$$

$$
a^{-n}=\frac{1}{a^{n}} \quad(a \neq 0)
$$

1.11

$$
(a b)^{n}=a^{n} b^{n}
$$

$1.12 \quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad(b \neq 0)$

Example 11

Simplify the following:
a $x^{3} x^{2}$
b $\frac{x^{3}}{x^{2}}$
c $\frac{x}{\sqrt{x}}$
d $(\sqrt[3]{x})^{2} \sqrt[3]{x}$

Solution

Using the above rules we have
a $x^{3} x^{2} \equiv x^{3+2}=x^{5}$
by 1.5
b $\frac{x^{3}}{x^{2}}{\underset{\text { by }}{1.6}}_{\equiv x^{3-2}}=x_{\text {by } 1.9}^{x^{1}}$
c $\frac{x}{\sqrt{x}}=\frac{x^{1}}{x^{1 / 2}}=\underbrace{x^{1-1 / 2}}_{\text {by } 1.6}$

$$
=x^{1 / 2}=\sqrt{x} \quad[\text { by } 1.1]
$$

d $(\sqrt[3]{x})^{2} \sqrt[3]{x}=\left(x^{1 / 3}\right)^{2}\left(x^{1 / 3}\right)$
by 1.2
$\equiv x^{2 / 3} x^{1 / 3}=\underbrace{x^{(2 / 3)+(1 / 3)}}=x^{1}=x$
by 1.7 by 1.5

As Example 11 shows, the rules of indices, 1.1 to 1.12 , can be used to simplify algebraic expressions. We can also apply these to show results that we have already used, such as $\sqrt{a^{2}}=a$:

$$
\sqrt{a^{2}}=\left(a^{2}\right)^{1 / 2}=a^{2 \times 1 / 2}=a^{1}=a
$$

Similarly we have

$$
\sqrt[n]{a^{n}}=\left(a^{n}\right)^{1 / n}=a^{n \times 1 / n}=a^{1}=a
$$

Note that if $x^{n}=a$ then taking the nth root of both sides gives

$$
\left(x^{n}\right)^{1 / n}=a^{1 / n}
$$

Thus we have

$$
\dagger \quad x=a^{1 / n}
$$

We call this (\dagger) because we will refer to it later on.
Let's try an engineering example.
$1.1 \sqrt{x}=x^{1 / 2}$
$1.2 \sqrt[n]{a}=a^{1 / n}$
$1.5 \quad a^{m} a^{n}=a^{m+n}$
$1.6 \frac{a^{m}}{a^{n}}=a^{m-n}$
$1.7 \quad\left(a^{m}\right)^{n}=a^{m \times n}$
$1.9 \quad a^{1}=a$

Example 12 thermodynamics

A gas in a cylinder is compressed according to the law

$$
P_{1} V_{1}^{1.5}=P_{2} V_{2}^{1.5}
$$

where P is pressure and V is volume. If the gas has an initial volume of $V_{1}=0.16 \mathrm{~m}^{3}$ and pressure of $P_{1}=140 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$ and is then compressed to a pressure of $P_{2}=750 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$, find the new volume, V_{2}.

Solution

Substituting $P_{1}=140 \times 10^{3}, P_{2}=750 \times 10^{3}$ and $V_{1}=0.16$ into

$$
P_{1} V_{1}^{1.5}=P_{2} V_{2}^{1.5}
$$

gives

$$
\begin{array}{rlrl}
(140 & \left.\times 10^{3}\right) \times(0.16)^{1.5}=\left(750 \times 10^{3}\right) \times V_{2}^{1.5} \\
V_{2}^{1.5} & =\frac{\left(140 \times 10^{3}\right) \times(0.16)^{1.5}}{750 \times 10^{3}} & & {\left[\text { Dividing by } 750 \times 10^{3}\right]} \\
& =\frac{140 \times(0.16)^{1.5}}{750} & & {\left[\text { Cancelling } 10^{3} \mathrm{~s}\right]} \\
V_{2}^{1.5} & =0.0119 & &
\end{array}
$$

Applying the index $1 / 1.5$ to both sides and using $\quad \dagger$ yields:

$$
V_{2}=(0.0119)^{1 / 1.5}=0.052 \mathrm{~m}^{3}(2 \text { s.f. })
$$

SUM M ARY

We can use the rules of indices, 1.1 to 1.12 , to simplify algebraic expressions and in engineering applications such as those in thermodynamics.

Exercise 1(c)

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

1 Simplify the following:
a $x^{5} x^{2}$
b $x^{1 / 5} x^{1 / 2}$
c $\frac{x^{3}}{x^{3}}$
d $\frac{x^{7}}{x^{9}}$
e $(\sqrt[5]{x})^{2} \cdot \sqrt[3]{x}$

2 Simplify
a $(1+y)^{2}(1+y)$
b $\frac{\left(1+x^{2}\right)^{5}}{\left(1+x^{2}\right)^{3}}$
c $\left(\sqrt[3]{x^{2}+x+1}\right)^{5} \sqrt[3]{x^{2}+x}$
d $\left(\sqrt[3]{x^{2}+x+1}\right)^{5} \sqrt[3]{x^{2}+x+1}$
Questions 3 to 5, inclusive, are on [thermodynamics]

3 A gas in an engine obeys the law

$$
P_{1} V_{1}^{1.45}=P_{2} V_{2}^{1.45}
$$

where P represents pressure and V represents volume.

Exercise $\mathbf{1}(\mathbf{c})$ continued

If $P_{1}=2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}, V_{1}=0.15 \mathrm{~m}^{3}$ and $P_{2}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, find V_{2}.

4 The work done, W, on the face of a piston by a gas is given by

$$
W=\frac{C V_{2}^{-0.35}-C V_{1}^{-0.35}}{-0.35}
$$

where $C=P_{1} V_{1}^{1.35}=P_{2} V_{2}^{1.35}(P$ and V are pressure and volume respectively and C is a constant). Show that

$$
-0.35 W=P_{2} V_{2}-P_{1} V_{1}
$$

5 The state of a gas changes from P_{1}, V_{1} and T_{1} to P_{2}, V_{2} and T_{2} (pressure, volume and temperature respectively). The characteristic equation is given by

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

By the polytropic law we have

$$
P_{1} V_{1}{ }^{n}=P_{2} V_{2}{ }^{n}
$$

By using these formulae, show that

$$
\frac{T_{1}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)^{1-\frac{1}{n}}
$$

6 [aerodynamics] In aerodynamics the following equation holds:

$$
\frac{\rho_{2}}{\rho_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{g / L C}\left(\frac{T_{1}}{T_{2}}\right)
$$

where $\rho_{1}, \rho_{2}, T_{1}$ and T_{2} represent the densities and temperatures at altitude 1 and 2 respectively. L is the rate of decrease of temperature with altitude. C is a constant and g is acceleration due to gravity. Show that

$$
\frac{\rho_{2}}{\rho_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g-L C}{L C}}
$$

SECTION D Dimensional analysis

By the end of this section you will be able to:

- apply the rules of indices to check equations which involve physical quantities

D1 Dimensional analysis

There are three fundamental dimensions: Mass, Length and Time (M, L and T respectively). All mechanical quantities can be expressed in terms of powers of M, L and T. (Non-mechanical quantities such as electrical current can also be expressed in terms of M, L and T, but it is easier to introduce a fourth fundamental dimension charge Q.)

We use the following notation:
[force] represents the dimension of force

Example 13

Obtain the fundamental dimensions of velocity (units m / s), acceleration (units $\mathrm{m} / \mathrm{s}^{2}$) and force ($=$ mass \times acceleration).

Solution

We know the units of velocity are m / s so the dimensions are

$$
\frac{\text { Length }}{\text { Time }}=\frac{L}{T}=L\left(\frac{1}{T}\right)_{\text {by } 1.3}^{\equiv L T^{-1} \text { etc }}
$$

Similarly acceleration has units $\mathrm{m} / \mathrm{s}^{2}$ so the dimensions are

$$
\frac{\text { Length }}{(\text { Time })^{2}}=\frac{L}{T^{2}}=L\left(\frac{1}{T^{2}}\right)_{\text {by } 1.10}^{\equiv L T^{-2}}
$$

What about force?

$$
\begin{aligned}
\text { force } & =\text { mass } \times \text { acceleration } \\
{[\text { force }] } & =M \times\left(L T^{-2}\right) \\
& =M L T^{-2}
\end{aligned}
$$

Similarly we can evaluate the dimensions of the other quantities as shown in Table 1.
Try verifying some of these in your own time.

	Quantity	Units	Dimensions
	Area	m^{2}	L^{2}
	Volume	m^{3}	L^{3}
	Velocity	m / s	$L T^{-1}$
	Acceleration	$\mathrm{m} / \mathrm{s}^{2}$	$L T^{-2}$
	Force	newton (N)	MLT ${ }^{-2}$
	Work (or energy)	joule (J)	$M L^{2} T^{-2}$
	Power	watt (W)	$M L^{2} T^{-3}$
	Pressure	$\mathrm{N} / \mathrm{m}^{2}$	$M L^{-1} T^{-2}$
	Density	$\mathrm{kg} / \mathrm{m}^{3}$	$M L^{-3}$
	Frequency	hertz (Hz)	T^{-1}

$1.3 \frac{1}{x}=x^{-1} \quad 1.10 \quad \frac{1}{a^{n}}=a^{-n}$

Dimensional analysis is a method used in checking an equation by establishing the same dimension formula on each side of the equation, that is
[Left-Hand Side] = [Right-Hand Side]

Numbers with no units attached to them are dimensionless.

Example 14 fluid mechanics

Bernoulli's equation is given by

$$
P+\frac{1}{2} \rho v^{2}+\rho g Z=\text { constant }
$$

where $P=$ pressure, $\rho=$ density, $v=$ velocity, $z=$ height and $g=$ acceleration due to gravity.
Find the dimensions of the constant.
Solution
Using Table 1 we have (remember $\frac{1}{2}$ is dimensionless)

$$
\begin{aligned}
& \underbrace{M L^{-1} T^{-2}}_{\rho}+\underbrace{M L^{-3}}_{\rho} \underbrace{\left(L T^{-1}\right.}_{v^{2}})^{2}+\underbrace{M L^{-3}}_{\rho} \underbrace{L T^{-2} L}_{g} \\
& =M L^{-1} T^{-2}+M L^{-3} \underbrace{L^{2} T^{-2}}_{\text {by }}+M \underbrace{L^{-3+2}}_{\text {by }} T^{-2} \\
& =M L^{-1} T^{-2}+M \underbrace{L^{-1} T^{-2}}_{=L^{-3+2}}+M L^{-1} T^{-2}
\end{aligned}
$$

Hence the constant has the dimensions $M L^{-1} T^{-2}$.

A physical requirement is that dimensional homogeneity holds, that is both sides of an equation have the same dimensions.

Example 15 mechanics

The period T of a pendulum of length l is given by

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

where g is acceleration due to gravity. Show that the formula has dimensional homogeneity.

Example 15 continued

Solution

Remember 2π is dimensionless. By Table $1, g$ has the dimensions $L T^{-2}$. So we have

$$
[T]=\sqrt{\frac{L}{L T^{-2}}}=\left(\frac{k}{L T^{-2}}\right)_{\text {by } 1.12}^{\frac{1}{2}}=\frac{1^{\frac{1}{2}}}{\left(T^{-2}\right)^{\frac{1}{2}}}=\frac{1}{\underbrace{T^{-2 \times \frac{1}{2}}}_{\text {by } 11.7}}=\frac{1}{T^{-1}}=T
$$

The last step is justified by

$$
\frac{1}{T^{-1}} \equiv \underbrace{\equiv}_{\text {by } 1.3}\left(T^{-1}\right)^{-1} \underset{\text { by }}{\equiv 1.7}=T^{(-1) \times(-1)}=T_{\text {by } 1.9}^{1} \equiv T
$$

Clearly period T has dimensions T.

SUMMARY

There are three fundamental dimensions - mass M, length L and time T. We can apply the rules of indices to check dimensional homogeneity.

Exercise 1(d)

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

All questions in this exercise belong to [dimensional analysis].

1 Show that the dimensions of
a pressure $\left(=\frac{\text { force }}{\text { area }}\right)$ are $M L^{-1} T^{-2}$
b density $\left(=\frac{\text { mass }}{\text { volume }}\right)$ are $M L^{-3}$
c momentum ($=$ mass \times velocity) are $M L T^{-1}$
d power ($=$ force \times velocity) are $M L^{2} T^{-3}$
e impulse ($=$ force \times time) are $M L T^{-1}$
f kinetic energy $\left(=\frac{1}{2} \times\right.$ mass $\left.\times(\text { velocity })^{2}\right)$ are $M L^{2} T^{-2}$
g potential energy ($=$ mass \times acceleration \times height) are $M L^{2} T^{-2}$

2 The pressure, P, at a depth d of a fluid of density ρ is given by

$$
P=\rho g d(g=\text { acceleration })
$$

Show that the formula has dimensional homogeneity.

3 Which of the following are dimensionally correct (have dimensional homogeneity) ?
a $F=m g l$
b $s=u t+\frac{1}{2} g t^{2}$
c $v^{2}=u^{2}+2 g s$
d $W=F \times v$
e $P=F \times l$
($m=$ mass, $g=$ acceleration, $l=$ length,
$t=$ time, $s=$ distance, u and $v=$ velocities,
$F=$ force, $W=$ work and $P=$ power).
$1.3 \frac{1}{x}=x^{-1} \quad 1.7 \quad\left(a^{m}\right)^{n}=a^{m \times n} \quad$ 1.9 $\quad a^{1}=a \quad 1.12 \quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Exercise 1(d) continued

4 The dynamic coefficient of viscosity μ (viscosity of a fluid) is found from

$$
F=\frac{\mu A v}{d}
$$

where $v=$ velocity, $d=$ distance, $F=$ force and $A=$ area. Find the dimensions of μ.

5 Show that the following are dimensionless parameters by checking that the dimensions of each are equal to 1 :
a Reynolds Number $=\frac{\rho v l}{\mu}$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh
b Mach Number $=\frac{v}{c}$
c Euler Number $=\frac{p}{\rho v^{2}}$
d Froude Number $=\frac{v}{\sqrt{g l}}$
e Weber Number $=\frac{\nu^{2} l \rho}{\sigma}$
(ρ is density, v is velocity, g is acceleration due to gravity, l is length, μ is viscosity, p is pressure, c is speed of sound and σ is surface tension whose units are N / m.)

SECTION E Expansion of brackets

By the end of this section you will be able to:

- expand brackets
- use expansion of brackets in engineering applications
- expand brackets of the type $(a+b)(c+d)$ using FOIL

E1 Revision of brackets

? What does $5(x+3)$ mean?
All the terms inside the bracket are multiplied by 5 :

$$
\begin{aligned}
5(x+3) & =(5 \times x)+(5 \times 3) \\
& =5 x+15
\end{aligned}
$$

Let's do a few examples.

Example 16

Multiply out the brackets of the following:
a $5(2 x+1)$
b $3(3 x-2)$
c $-(x-1)$
d $-2(-x-4)$

Solution
a $5(2 x+1)=(5 \times 2 x)+(5 \times 1)=10 x+5$
b $3(3 x-2)=(3 \times 3 x)-(3 \times 2)=9 x-6$
c Remember that 'minus times minus equals plus':

Example 16 continued

$$
-(x-1)=-1(x-1)=(-1 \times x)-\underbrace{[1 \times(-1)]}_{=-1}=-x+\underset{\substack{\text { because } \\-(-1)=1}}{1}=1-x
$$

The result of taking a negative sign inside a bracket is to change all the signs inside the bracket.
d $-2(-x-4)=[-2 \times(-x)]-\underbrace{[2 \times(-4)]}_{=-8}=2 x+8$

Example 17

Simplify the following:
a $3(x+2)+5(2 x+3)$
b $(x+5)-2(x-1)$
c $-(2 x+3)+(2 x+3)$

Solution

We add all the like terms:
a $3(x+2)+5(2 x+3)=(3 x+6)+(10 x+15)$

$$
\begin{aligned}
& =3 x+10 x+(6+15) \\
& \text { collecting all the } x \text { terms } \\
& =13 x+21
\end{aligned}
$$

b Multiplying out the brackets gives

$$
\begin{aligned}
(x+5)-2(x-1) & =(x+5)-(2 \times x)-(2 \times(-1)) \\
& =(x+5)-2 x+2 \\
& =x-2 x+(5+2) \\
& =7-x
\end{aligned}
$$

c $-(2 x+3)+(2 x+3)=0$

Example 18 structures

The deflection, y, at a distance x from one end of a beam of length l is given by

$$
y=\frac{w x^{2}}{6 E I}(3 l-x)
$$

where w is the load per unit length and $E I$ is the flexural rigidity of the beam. Remove the brackets of this expression.

Solution
We have

$$
\begin{aligned}
y=\frac{w x^{2}}{6 E I}(3 l-x) & =\frac{w x^{2}}{6 E I} 3 l-\frac{w x^{2}}{6 E I} x \\
& =\frac{3 w x^{2} l}{6 E I}-\frac{w x^{2} x}{6 E I} \\
& =\frac{w x^{2} l}{2 E I}-\frac{w x^{3}}{6 E I}
\end{aligned}
$$

E2 Using FOIL

How do we remove the brackets from an expression like $(x+3)(x+2)$?
Each term of the first bracket (x and 3) multiplies the second bracket $(x+2)$:

$$
\begin{aligned}
(x+3)(x+2) & =x(x+2)+3(x+2) \\
& =(x \times x)+(x \times 2)+(3 \times x)+(3 \times 2) \\
& =x^{2}+\underbrace{2 x+3 x}_{=5 x}+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

$$
\begin{aligned}
(x+3)(x+2) & =\underbrace{(x \times x)}_{\mathrm{F}}+\underbrace{(x \times 2)}_{\mathrm{O}}+\underbrace{(3 \times x)}_{\mathrm{I}}+\underbrace{(3 \times 2)}_{\mathrm{L}} \\
& =x^{2}+5 x+6
\end{aligned}
$$

Multiply
The First terms in each bracket
The Outside terms
The Inside terms
The Last terms
The process of multiplying brackets is also known as expanding brackets.

Example 19

Expand the following:
a $(x+4)(x+5)$
b $(x+5)(x-1)$
c $(2 x+3)(3 x+5)$
d $(3 x-1)(4 x-2)$

Solution
Using FOIL in each case gives
$\mathbf{a}(x+4)(x+5)=\underbrace{(x \times x)}_{\mathrm{F}}+\underbrace{(x \times 5)}_{\mathrm{O}}+\underbrace{(4 \times x)}_{\mathrm{I}}+\underbrace{(4 \times 5)}_{\mathrm{L}}$

$$
=x^{2}+\underbrace{5 x+4 x}_{=9 x}+20
$$

$$
=x^{2}+9 x+20
$$

b $(x+5)(x-1)=\underbrace{(x \times x)}_{\mathrm{F}}+\underbrace{(x \times(-1))}_{\mathrm{O}}+\underbrace{(5 \times x)}_{\mathrm{I}}+\underbrace{(5 \times(-1))}_{\mathrm{L}}$
$=x^{2}-x+5 x-5$
$=x^{2}+\underset{=5 x-x}{4 x}-5$

Example 19 continued

$$
\text { c } \begin{aligned}
(2 x+3)(3 x+5) & =\underbrace{(2 x \times 3 x}_{\mathrm{F}})+\underbrace{(2 x \times 5)}_{\mathrm{O}}+\underbrace{(3 \times 3 x)}_{\mathrm{I}}+\underbrace{(3 \times 5)}_{\mathrm{L}} \\
& =6 x^{2}+\underbrace{10 x+9 x}_{=19 x}+15 \\
& =6 x^{2}+19 x+15
\end{aligned}
$$

$$
\mathbf{d}(3 x-1)(4 x-2)=(\underbrace{(3 x \times 4 x}_{\mathrm{F}})+\underbrace{(3 x \times(-2))}_{\mathrm{O}}+\underbrace{((-1) \times 4 x)}_{\mathrm{I}}+(\underbrace{(-1) \times(-2)}_{\mathrm{L}})
$$

$$
=12 x^{2} \underbrace{-6 x-4 x}_{=-10 x}+2
$$

$$
=12 x^{2}-10 x+2
$$

E3 Important expansions

Important expansions are $(a+b)^{2}$ and $(a-b)^{2}$. Let's use FOIL to expand these.
We have

$$
\begin{aligned}
(a+b)^{2}=(a+b)(a+b) & =(\underbrace{a \times a}_{\mathrm{F}})+(\underbrace{a \times b}_{\mathrm{O}})+(\underbrace{b \times a}_{\mathrm{I}})+(\underbrace{b \times b}_{\mathrm{L}}) \\
& =a^{2}+\underbrace{a b+b a}_{=2 a b}+b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
(a-b)^{2}=(a-b)(a-b) & =(\underbrace{a \times a}_{\mathrm{F}})-(\underbrace{a \times b}_{0})-(\underbrace{b \times a}_{\mathrm{f}})+(\underbrace{b \times b}_{\mathrm{L}}) \\
& =a^{2}-a b-b a+b^{2} \\
& =a^{2}-2 a b+b^{2}
\end{aligned}
$$

Note these results:

$$
\begin{array}{ll}
(a+b)^{2} \neq a^{2}+b^{2} & {[\text { Not equal }]} \\
(a-b)^{2} \neq a^{2}-b^{2} & {[\text { Not equal }]}
\end{array}
$$

The symbol ' \neq ' means 'does not equal'.
It is useful to remember these results:

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

1.14

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

For example, by using 1.13 with $a=2 x$ and $b=3$ we have

$$
\begin{aligned}
(2 x+3)^{2} & =(2 x)^{2}+(2 \times 2 x \times 3)+3^{2} \\
& =2^{2} x^{2}+(4 x \times 3)+9 \\
& =4 x^{2}+12 x+9
\end{aligned}
$$

Similarly, using 1.14 with $a=5 x$ and $b=2$ we have

$$
\begin{aligned}
(5 x-2)^{2} & =(5 x)^{2}-(2 \times 5 x \times 2)+2^{2} \\
& =5^{2} x^{2}-(10 x \times 2)+4 \\
& =25 x^{2}-20 x+4
\end{aligned}
$$

Another important result which will be discussed in Exercise 1(e) is

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

Expansions of the type $1.13,1.14$ and 1.15 are prevalent in many fields of engineering and are worth learning until they become second nature to you.

Example 20 electrical principles

The impedance, Z, of a circuit is given by

$$
Z^{2}=R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}
$$

where R is resistance, L is inductance, C is capacitance and ω is angular frequency. Expand the brackets and simplify.

Solution

Substituting $a=\omega L$ and $b=\frac{1}{\omega C}$ into $(a-b)^{2}=a^{2}-2 a b+b^{2}$ produces

$$
\begin{aligned}
\left(\omega L-\frac{1}{\omega C}\right)^{2} & =(\omega L)^{2}-\left(2 \times \omega L \times \frac{1}{\varpi C}\right)+\left(\frac{1}{\omega C}\right)^{2} \\
& =\omega^{2} L^{2}-\left(\frac{2 \times L \times 1}{C}\right)+\frac{1^{2}}{(\omega C)^{2}} \\
& =\omega^{2} L^{2}-\frac{2 L}{C}+\frac{1}{\omega^{2} C^{2}} \quad[\text { Simplifying }]
\end{aligned}
$$

Substituting this into the original formula gives

$$
Z^{2}=R^{2}+\omega^{2} L^{2}-\frac{2 L}{C}+\frac{1}{\omega^{2} C^{2}}
$$

SUMMARY

Expand brackets of the form $(a+b)(c+d)$ by using FOIL (First, $\underline{\text { Outside, }}$ Inside, Last). Important expansions are
$1.13(a+b)^{2}=a^{2}+2 a b+b^{2}$
$1.14(a-b)^{2}=a^{2}-2 a b+b^{2}$
$1.15(a+b)(a-b)=a^{2}-b^{2}$

Exercise 1(e)

1 Multiply out the brackets and simplify:
a $2(3 x+1)$
b $-(2 x+1)$
c $-3(5 y+1)$
d $x(3 x+5)$
e $3(y-1)-(2 y+1)$
f $x(x-3)+x(3 x+2)$

2 [structures] Remove the brackets from the following and simplify:
a $y=\frac{w}{2 E I}\left(L x^{3}-x^{4}\right)$
b $y=\frac{w x^{3}}{8 E I}(2 L-3 x)$
c $y=\frac{w x^{2}}{48 E I}\left(3 L^{2}-2 x^{2}\right)$
d $y=-\frac{w}{12 E I}\left(L x^{3}-\frac{x^{4}}{2}-\frac{L^{3} x}{2}\right)$
(L is length of beam, x is distance along the beam, $E I$ is the flexural rigidity, y is deflection of the beam and w is the load per unit length).
3 Expand the following brackets and simplify:
a $(x+1)(x+2)$
b $(2 x+3)(3 x+5)$
c $(2 x-1)^{2}$
d $(a+b)^{2}-(a-b)^{2}$
e $(x y+1)^{2}-x(y+1)$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

4 By expanding brackets show that
a $(x-5)(x+5)=x^{2}-25$
b $(2 x-3)(2 x+3)=4 x^{2}-9$
c $(9 x-7)(9 x+7)=81 x^{2}-49$

? What do you notice about the

 above results?In general

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

This is known as the difference between two squares.
5 品运 [electrical principles] Expand and simplify the following:
a $(R+\omega L)(R-\omega L)$
b $\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}$
(R is resistance, ω is angular frequency, L is inductance and C is capacitance).
6 Find
$(x-a)(x-b)(x-c) \ldots(x-z)$
where... means (x - number represented by next letter of the Roman alphabet).

SECTION F Factorization

By the end of this section you will be able to:

- factorize simple expressions
- factorize quadratic expressions

F1 Factorizing expressions

We investigated factors in the Introductory chapter. What are the factors of $\mathbf{1 0}$?

$$
5 \text { and } 2 \text { because } 5 \times 2=10
$$

Of course there are other factors of $10: 1$ and 10 .

Similarly $2 \times 5 \times 7=70$ and we say that 2,5 and 7 are factors of 70 .
In this section we look at factors of algebraic expressions.

Example 21

Factorize $5 x+5 y+5 z$.

Solution

What do you notice about $5 x+5 y+5 z$?
The number 5 is common to all the terms in $5 x+5 y+5 z$. We write

$$
5 x+5 y+5 z=5(x+y+z)
$$

and say that 5 and $x+y+z$ are factors of $5 x+5 y+5 z$.

Factorization is the reverse process of expansion discussed in the previous section.

? How do we factorize an expression like

$$
5 x-4 x^{2} ?
$$

We know x is common in both terms because $x^{2}=x x$, thus

$$
5 x-4 x^{2}=5 x-4 x x=x(5-4 x)
$$

How do we factorize an engineering expression such as

$$
y=\frac{w x^{2}}{E I}-\frac{w x^{3}}{E I} ?
$$

We know from the rules of indices that x^{3} can be written as $x^{2} x$, so we have:

$$
y=\frac{w x^{2}}{E I}-\frac{w x^{2} x}{E I}
$$

? What is common between the two terms on the Right-Hand Side?
Clearly it is $\frac{w x^{2}}{E I}$. So we can take out this common factor and write y as

$$
y=\frac{w x^{2}}{E I} 1-\frac{w x^{2}}{E I} x=\frac{w x^{2}}{E I}(1-x)
$$

Let's do another example.

Example 22 structures

The deflection y of a beam of length L at distance x is given by

$$
y=\frac{w x^{2} L^{2}}{16 E I}+\frac{w x^{4}}{16 E I}
$$

where w is the load per unit length and $E I$ is the flexural rigidity. Factorize this expression.

Example 22 continued

Solution

From the rules of indices we have $x^{4}=x^{2} x^{2}$, so we can write y as

$$
y=\frac{w x^{2} L^{2}}{16 E I}+\frac{w x^{2} x^{2}}{16 E I}
$$

$\frac{w x^{2}}{16 E I}$ is common to both terms on the Right-Hand Side, so we can take this factor out:

$$
y=\frac{w x^{2}}{16 E I}\left(L^{2}+x^{2}\right)
$$

The next example is a lot more difficult because it involves an algebraic fraction with different denominators.

Example 23 structures

The deflection, y, of a beam of length L at distance x is given by

$$
y=\frac{w x^{2} L^{2}}{8 E I}-\frac{w x^{4}}{24 E I}
$$

where w is the load per unit length and $E I$ is the flexural rigidity. Factorize this expression.

Solution

From the rules of indices we have $x^{4}=x^{2} x^{2}$, so we can write y as

$$
y=\frac{w x^{2} L^{2}}{8 E I}-\frac{w x^{2} x^{2}}{24 E I}
$$

$\frac{w x^{2}}{E I}$ is common to both terms on the Right-Hand Side, so we can take this factor out:

$$
\text { * } y=\frac{w x^{2}}{E I}\left(\frac{L^{2}}{8}-\frac{x^{2}}{24}\right)
$$

Can we factorize this further?
Yes. The bracket term $\frac{L^{2}}{8}-\frac{x^{2}}{24}$ is an example of an algebraic fraction. It is dealt with in the same way as an arithmetic fraction.
How do you evaluate $\frac{1}{8}-\frac{1}{24}$?
We need a common denominator, 24 . Hence

$$
\frac{1}{8}-\frac{1}{24}=\underbrace{\frac{3}{24}}_{=1 / 8}-\frac{1}{24}
$$

Example 23 continued

Similarly we have

$$
\frac{L^{2}}{8}-\frac{x^{2}}{24}=\frac{3 L^{2}}{24}-\frac{x^{2}}{24}=\frac{3 L^{2}-x^{2}}{24}
$$

(Of course we cannot simplify $3 L^{2}-x^{2}$ any further because they are not like terms.) Substituting $\frac{L^{2}}{8}-\frac{x^{2}}{24}=\frac{3 L^{2}-x^{2}}{24}$ into $\quad *$ gives

$$
\begin{aligned}
y & =\frac{w x^{2}}{E I}\left(\frac{3 L^{2}-x^{2}}{24}\right) \\
& =\frac{w x^{2}}{24 E I}\left(3 L^{2}-x^{2}\right)
\end{aligned}
$$

In Example 23 the examination of the fraction, $\frac{1}{8}-\frac{1}{24}$, might seem like a diversion, but to deal with the algebraic fraction, $\frac{L^{2}}{8}-\frac{x^{2}}{24}$, we need to consider the arithmetic fraction.

F2 Factorizing quadratics $\left(a x^{2}+b x+c\right)$

An expression of the form $a x^{2}+b x+c$ (where a is not zero) is called a quadratic. Expand $(x+2)(x+5)$.

We can use FOIL:

$$
\begin{aligned}
(x+2)(x+5) & =(\underbrace{x \times x}_{\mathrm{F}})+(\underbrace{x \times 5}_{0})+(\underbrace{2 \times x}_{\mathrm{V}})+(\underbrace{2 \times 5}_{\mathrm{L}}) \\
& =x^{2}+5 x+2 x+10 \\
& =x^{2}+7 x+10
\end{aligned}
$$

Remember in this section we go in the opposite direction.
How can we obtain $(x+2)(x+5)$ given the quadratic $x^{2}+7 x+10$? (Or how do we factorize $\boldsymbol{x}^{2}+7 x+10$?)

Let's assume we don't know the factors of $x^{2}+7 x+10$. We know $x^{2}+7 x+10=(x \pm *)(x \pm \bullet)$ because $x \times x$ gives x^{2}.
1 If the sign in front of 10 is

+ then \pm and \pm in the brackets are the same sign
- then \pm and \pm in the brackets are different signs

In this example, \pm and \pm are the same sign but we have to establish which sign.
2 If the signs are the same then

$$
x^{2} \pm 7 x+10=(x \pm *)(x \pm \bullet)
$$

this first sign tells you what the sign is, hence

$$
x^{2}+7 x+10=(x+*)(x+\bullet)
$$

3 Now we look at the factors of 10 (because 10 is the only term in the quadratic which does not contain an x). What are the factors of $\mathbf{1 0}$?

$$
10 \text { and } 1 \text { or } 5 \text { and } 2
$$

We have a $7 x$ on the Left-Hand Side, therefore

$$
\begin{aligned}
7 x & =x \bullet+* x & & {[\text { Expanding }] } \\
& =(\bullet+*) x & & {[\text { Factorizing }] }
\end{aligned}
$$

Since we want 7 in the middle, * must be 5 and • must be 2 (or vice versa). So we have

$$
x^{2}+7 x+10=(x+5)(x+2)
$$

Let's do another example.

Example 24

Factorize $x^{2}-2 x-3$.
Solution
Using the above procedure we have

$$
x^{2}-2 x \underset{\uparrow}{\uparrow}=3=(x+)(x-)
$$

Because of this, the signs are different. Next we look at the factors of 3.
What are the factors of 3 ?
1 and 3
Hence we have

$$
(x+1)(x-3) \text { or }(x+3)(x-1)
$$

Since we want -2 in the middle it is -3 and +1 . Thus

$$
x^{2}-2 x-3=(x+1)(x-3)
$$

2 How do we factorize $x^{2}+5 x-3$?
Since the only factors of 3 are 1 and 3 we can only have

$$
(x+1)(x-3) \text { or }(x-1)(x+3)
$$

Multiplying out either of these does not give

$$
x^{2}+5 x-3
$$

Where have we made a mistake?
There is no mistake. Simply, not all quadratics, $a x^{2}+b x+c$, can be factorized into whole numbers. The actual factorization is

$$
x^{2}+5 x-3=\left(x+\frac{5-\sqrt{37}}{2}\right)\left(x+\frac{5+\sqrt{37}}{2}\right)
$$

Of course this looks horrendous and you are not expected to attempt this factorization in this chapter. The quadratic $x^{2}+5 x-3$ cannot be factorized into simple whole numbers.

Example 25

Factorize $2 x^{2}+7 x-15$.

Solution

We know:

$$
2 x^{2}+7 x \underset{\uparrow}{\approx} 15=(2 x \pm *)(x \pm \bullet) \quad\left[\text { Because we want } 2 x^{2}\right]
$$

This sign tells us that the signs in the middle (\pm and \pm) are different.
So we have

$$
(2 x-*)(x+\bullet) \text { or }(2 x+*)(x-\bullet)
$$

Let's consider the case $(2 x-*)(x+\bullet)$. The factors of 15 are 15 and 1 or 5 and 3 . We need a 7 in the middle (the x term). In this example we need to be careful because the middle term is obtained by

$$
(2 x-*)(x+\bullet)=\ldots \overbrace{\underbrace{2 x \times \bullet}_{\text {outside }}+\underbrace{x \times(-*}_{\text {inside }})}^{\text {only the middle term }} \cdots
$$

Clearly the factors 15 and 1 are useless because we will never get 7. They need to be 5 and 3 because $(2 \times 5)-3=7$. So \bullet is 5 and * is 3 , that is the x term is made from $(2 \times 5)-3=7$. We have

$$
2 x^{2}+7 x-15=(2 x-3)(x+5)
$$

You can always check your result; expanding $(2 x-3)(x+5)$ gives $2 x^{2}+7 x-15$. Also note that if you change the signs such that we have $(2 x+3)(x-5)$ then you get $-7 x$ in the middle and not $+7 x$ as required. You can only judge the placement of signs by practising a number of factorizations. It's good practice to expand your final factorization to check your result.

F3 Important factorization

? How do we factorize $x^{2}-25$?
It is a quadratic because the highest power term is x^{2} and it doesn't matter if there is no x. Remember a quadratic is $a x^{2}+b x+c$ where a is not zero but b or c may be zero.

? How do we factorize this, $\boldsymbol{x}^{2}-25$?

We can use
1.15

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

It's easier than the above, so we have

$$
\begin{aligned}
x^{2}-25 & =x^{2}-5^{2} \\
& \equiv(x+5)(x-5) \\
\text { by } & =(155
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
x^{2}-9 & =(x+3)(x-3) \\
x^{2}-16 & =(x+4)(x-4) \\
x^{2}-5 & =x^{2}-(\sqrt{5})^{2} \\
& =(x+\sqrt{5})(x-\sqrt{5})
\end{aligned}
$$

Let's investigate a more challenging example.

Example 26 mechanics
The equation of an object falling in air is given by

$$
m a=m g-k v^{2}
$$

where $m(\neq 0)$ is the mass of the object, a is acceleration, v is velocity, g is acceleration due to gravity and k is a constant. Show that

$$
a=(\sqrt{g}-c v)(\sqrt{g}+c v) \text { where } c=\sqrt{\frac{k}{m}}
$$

Solution

Dividing the initial equation, $m a=m g-k v^{2}$, by m gives

$$
a=\frac{m g}{m}-\frac{k}{m} v^{2}=g-\frac{k}{m} v^{2}
$$

From earlier work we know that $g=(\sqrt{g})^{2}$ and $\frac{k}{m}=\left(\sqrt{\frac{k}{m}}\right)^{2}$ so we have

$$
\begin{aligned}
a & =(\sqrt{g})^{2}-\left(\sqrt{\frac{k}{m}}\right)^{2} v^{2} \\
& =(\sqrt{g})^{2}-c^{2} v^{2} \quad \text { where } c=\left(\sqrt{\frac{k}{m}}\right) \\
& =(\sqrt{g})^{2}-\underbrace{(c v)^{2}}_{\text {by } 1.11}
\end{aligned}
$$

How can we place $(\sqrt{g})^{2}-(c v)^{2}$ into two brackets?
Use 1.15, hence

$$
a=(\sqrt{g})^{2}-(c v)^{2}=(\sqrt{g}-c v)(\sqrt{g}+c v)
$$

SUMMARY

To factorize $a x^{2}+b x+c$ we need to look at factors of a and c and signs inside the expression．A common factorization is
$1.15 \quad a^{2}-b^{2}=(a-b)(a+b)$
You need to know this result in both directions，that is from left to right and right to left．

Exercise 1（f）

Solutions at end of book．Complete solutions available at www．palgrave．com／science／engineering／singh

1 Factorize the following：
a $4 x+4 y+4 z$
b $8 x+8 x y$
c $2 x-4 y$
d $3 x-2 x^{2}$
e $x^{2}-x y$

2 ［冏［mechanics］The following formulae occur in mechanics．Factorize each of them．
a $s=u t+\frac{1}{2} a t^{2}$
b $F=\frac{m v_{2}}{t}-\frac{m v_{1}}{t}$
c $F=\rho A v_{2} v_{1}-\rho A v_{1}^{2}$
3 The surface area，S ，of a cone of radius r and height h is given by

$$
S=\pi r^{2}+\pi r\left(r^{2}+h^{2}\right)^{1 / 2}
$$

Factorize this formula．
4 Factorize the following：
a $x^{2}+7 x+10$
b $x^{2}+5 x+4$
c $x^{2}-5 x+4$
d $x^{2}-4 x-12$
e $2 x^{2}+x-1$
f $x^{2}-3 x-4$
g $21 x^{2}+29 x-10$
5 管品［electrical principles］Factorize the following：
a $Z^{2}-R^{2}$
b $\omega^{2} L^{2}-\frac{1}{\omega^{2} C^{2}}$
（ Z is impedance，R is resistance，L is inductance，C is capacitance and ω is angular frequency）．

6 ［aerodynamics］The Froude efficiency，F ，of a propulsive system is given by

$$
F=\frac{2\left(V V_{\mathrm{s}}-V^{2}\right)}{V_{\mathrm{s}}^{2}-V^{2}}
$$

［ V_{s} and V are velocities］．

Show that

$$
F=\frac{2 V}{V_{\mathrm{s}}+V}
$$

7 ［structures］Factorize the following：
a $y=\frac{3 w L x^{2}}{6 E I}-\frac{w x^{3}}{6 E I}$
b $y=\frac{w L x^{3}}{4 E I}-\frac{3 w x^{4}}{8 E I}$
c $y=\frac{w x^{4}}{24 E I}-\frac{w L x^{3}}{12 E I}+\frac{w L^{2} x^{2}}{24 E I}$
where y is the deflection at a distance x along a beam of length L, w is load per unit length and $E I$ is flexural rigidity．

8 ［mechanics］The acceleration，a ，of an object in vibration is given by

$$
a=g-k^{2} \omega^{2}
$$

where g is acceleration due to gravity，ω is angular frequency and k is a constant．
Show that $a=(\sqrt{g}-k \omega)(\sqrt{g}+k \omega)$ ．
9 ［structures］The deflection，y ，of a beam of length l at a distance x from one end is given by

$$
y=\frac{w x^{3}}{12 E I}-\frac{l x^{2} w}{8 E I}+\frac{l^{2} w x}{24 E I}
$$

where $E I$ is flexural rigidity and w is load per unit length on the beam．Show that

$$
y=\frac{w x}{24 E I}(2 x-l)(x-l)
$$

Exercise 1 (f) continued

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

10 蔃 (electrical principles] Show that
a If $N=\frac{Z_{0}+\frac{1}{2} Z_{1}}{Z_{0}-\frac{1}{2} Z_{1}}$ then
$Z_{1}=2 Z_{0}\left(\frac{N-1}{N+1}\right)$
b If $Z_{1}(N-1)^{2}+2 Z_{0}\left(N^{2}-1\right)$

$$
=Z_{1}(N+1)^{2}
$$

then $Z_{1}=Z_{0}\left(\frac{N^{2}-1}{2 N}\right)$
$\left(Z_{1}, Z_{0}\right.$ are impedances and N is a number).

Section G Quadratic equations

By the end of this section you will be able to:

- solve some quadratic equations of the form $a x^{2}=b$
- solve some quadratic equations by factorization
- solve all quadratic equations by formula

In Section A3 we considered linear equations. In this section we consider the different methods involved in solving quadratic equations.

A quadratic equation is an equation with the unknown variable to the second power. It has the form

$$
a x^{2}+b x+c=0 \quad[a \neq 0]
$$

where x is the unknown variable. In Example 27 below both equations are quadratics.

G1 Solving quadratics using factorization

We use the process of factorization described in the previous section to solve quadratic equations.
We know from the Introductory chapter that if the result of multiplying two numbers is zero then one of the numbers must be zero. This can be stated as:

If A and B are numbers and $A \times B=0$ then $A=0$ or $B=0$.
We use this to solve various equations, for example to solve $x^{2}-2 x=0$.
Since x is common in both terms we can factorize, thus

$$
\begin{aligned}
x^{2}-2 x= & x x-2 x=0 \\
& x(x-2)=0 \quad \text { [Factorizing] } \\
& x=0 \text { or } x-2=0 \\
& x=0 \text { or } x=2
\end{aligned}
$$

Example 27

Solve the following equations：
a $x^{2}-x-6=0$
b $27 x^{2}-6 x-5=0$

Solution

a What are we trying to find？

The value（s）of x satisfying $x^{2}-x-6=0$ ．Can we factorize $\boldsymbol{x}^{2}-\boldsymbol{x}-\mathbf{6}$ ？

$$
x^{2}-x-6=(x+2)(x-3)
$$

So we have

$$
(x+2)(x-3)=0
$$

What can we say about $(x+2)(x-3)=0$ ？

$$
(x+2)=0 \quad \text { or } \quad(x-3)=0
$$

Hence we have

$$
\begin{array}{lll}
x+2=0 & \text { or } & x-3=0 \\
x=-2 & \text { or } & x=3
\end{array}
$$

b Factorizing $27 x^{2}-6 x-5$ is more difficult but it can factorized into whole numbers：

$$
\begin{aligned}
& 27 x^{2}-6 x-5=(3 x+1)(9 x-5) \\
& (3 x+1)(9 x-5)=0
\end{aligned}
$$

which gives

$$
\begin{array}{lll}
3 x+1=0 & \text { or } & 9 \mathrm{x}-5=0 \\
3 x=-1 & \text { or } & 9 x=5 \\
x=\frac{-1}{3}=-\frac{1}{3} & \text { or } \quad x=\frac{5}{9}
\end{array}
$$

Remember that not all quadratics can be factorized into simple whole numbers．

Example 28 mechanics

A body of mass $m=35 \mathrm{~kg}$ has kinetic energy，$K E=3500$ joule（J）．Find the speed v given that

$$
K E=\frac{1}{2} m v^{2}
$$

Solution

Substituting $m=35$ and $K E=3500$ into $\frac{1}{2} m v^{2}=K E$ gives

$$
\frac{1}{2} 35 v^{2}=3500
$$

Example 28 continued

How do we find v ?

We first find v^{2} and then take the square root.
So we need to remove the $\frac{1}{2}$ and 35 from the Left-Hand Side. How?
Multiply both sides by 2 :

$$
35 v^{2}=3500 \times 2=7000
$$

Divide both sides by 35 :

$$
v^{2}=\frac{7000}{35}=200
$$

Taking the square root of both sides and using a calculator gives

$$
v=\sqrt{200}=14.14(2 \mathrm{~d} . \mathrm{p} .)=14 \mathrm{~m} / \mathrm{s}(2 \text { s.f. })
$$

G2 Solving quadratics using formula

The formula for solving a quadratic equation

$$
a x^{2}+b x+c=0
$$

where x is a unknown variable is given by
1.16

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Subsequently we will show this result in Chapter 2. (See question 8 in Exercise 2(d).)
If the factorization is difficult or impossible then we use 1.16 . Generally students prefer to use this formula rather than factorization even when they shouldn't, for example to solve $x^{2}-2 x=0$.

E Example 29 structures

The bending moment, M, of a beam is given by

$$
M=0.3 x^{2}+0.35 x-2.6
$$

where x is the distance (in m) along a beam from one end. Find the value of x for which $M=0$.

Solution
We have

$$
0.3 x^{2}+0.35 x-2.6=0
$$

Example 29 continued

It is not easy to factorize this, so we use formula 1.16 to determine x. For the formula, a is the number next to x^{2}, b is the number next to x and c is the number without any x attached to it. Hence

$$
a=0.3, \quad b=0.35 \text { and } c=-2.6
$$

Substituting this, $a=0.3, b=0.35$ and $c=-2.6$, into
1.16

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

gives

$$
\begin{aligned}
x & =\frac{\left.-0.35 \pm \sqrt{0.35^{2}-(4 \times 0.3 \times(-2.6)}\right)}{2 \times 0.3} \\
& =\frac{-0.35 \pm \sqrt{3.243}}{0.6} \\
& =\frac{-0.35 \pm 1.801}{0.6} \\
x & =\frac{-0.35+1.801}{0.6} \quad \text { or } \quad \frac{-0.35-1.801}{0.6} \\
x & =2.42(2 \text { d.p. }) \quad \text { or } \quad x=-3.59(2 \mathrm{d.p.})
\end{aligned}
$$

Since we cannot have a distance of -3.59 m on the beam, the bending moment $M=0$ is at $x=2.42 \mathrm{~m}$.

SUMMARY

For a quadratic equation, $a x^{2}+b x+c=0$, first seek factorization. If this fails then try the formula
$1.16 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Exercise 1(g)

1 Solve the following equations:
a $2 x-1=0$
b $x^{2}+5 x+6=0$
c $x^{2}-10 x+21=0$
d $6 x^{2}-13 x-5=0$
e $5 x^{2}+14 x-3=0$
1 Solve the following equations:

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

2
[9ำ [mechanics] A vehicle with velocity v and constant acceleration a is related by

$$
v^{2}=u^{2}+2 a s
$$

where s is the distance and u is the initial velocity. If $a=3.2 \mathrm{~m} / \mathrm{s}^{2}, s=187 \mathrm{~m}$ and $v=35 \mathrm{~m} / \mathrm{s}$, find u.

Exercise 1(g) continued

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

3 Tstructures] The maximum deflection of a beam occurs at x satisfying

$$
2 x^{2}-3 x L+L^{2}=0
$$

where L is the length of the beam and x is the distance along the beam from one end. Find x at maximum deflection.
4 [mechanics] The displacement, s, of a particle is given by

$$
s=1.9 t+4.3 t^{2} \quad(t \geq 0)
$$

where t is time. Find the time taken for a displacement of 50 m .

5 A rectangular conservatory has length l and its width is 5 m shorter then its length. Given that the area of the floor is $84 \mathrm{~m}^{2}$, find the dimensions of the floor.

6 [structures] The bending moment, \bar{M}, of a beam is given by

$$
M=3000-500 x-20 x^{2}
$$

where x is the distance along the beam from one end. At what distance is the bending moment $M=0$.

7 [structures] A simply supported beam has the bending moment, M, given by

$$
M=\frac{15}{8} x-\frac{29}{4}\left(x-\frac{1}{2}\right)^{2}
$$

where x is the distance along the beam from one support. Find the value(s) of x for $M=0$.

8 [mechanics] The height h (above the ground level) of a ball thrown vertically upwards is given by

$$
h=-4.9 t^{2}+55 t+12
$$

where t is time. Find the time taken to reach the ground.

9 [mechanics] A ball is thrown vertically upwards from a height h_{0}. The height h above ground level is given by

$$
h=h_{0}+u t-\frac{1}{2} g t^{2}
$$

where t is time and u is initial velocity. Find an expression of t for the ball to reach the ground. equation occurs in aerodynamics:

$$
\begin{gathered}
\frac{-T}{2 w L^{3 / 2}}=\frac{4 k L^{5 / 2}-3\left(D L^{1 / 2}+k L^{5 / 2}\right)}{2 L^{3}} \\
(L \neq 0, w \neq 0)
\end{gathered}
$$

where T is thrust, w is weight, L is lift coefficient, D is drag coefficient and $k(\neq 0)$ is a constant. Show that

$$
L=\frac{-T \pm \sqrt{T^{2}+12 k D w^{2}}}{2 k w}
$$

SECTION H Simultaneous equations

By the end of this section you will be able to:

- solve a pair of linear simultaneous equations

H1 Solving simultaneous linear equations

Simultaneous means occurring together. Simultaneous equations are a set of equations such that the unknown variables $x, y, z \ldots$ have the same values satisfying each equation. In this section we solve two simultaneous linear equations.

Example 30

Solve the simultaneous equations:

$$
\begin{aligned}
& 150 x+140 y=10.4 \\
& 150 x+100 y=10
\end{aligned}
$$

Solution

What are we trying to find?
The values of x and y satisfying the above equations:
$\dagger \quad 150 x+140 y=10.4$
$\dagger \dagger 150 x+100 y=10$
If we have one equation with one unknown then it is easy, we can apply a simple transposition of formulae. Can we possibly get one equation with one unknown from \dagger and $\dagger \dagger$?

If we subtract these equations, \square
$\dagger \quad 150 x+140 y=10.4$
$\dagger \quad-(150 x+100 y=10)$
we get

$$
0+40 y=0.4
$$

Can we solve $40 y=0.4$?
This is just a linear equation with one unknown, y :

$$
\begin{aligned}
40 y & =0.4 \\
y & =\frac{0.4}{40}=0.01
\end{aligned}
$$

Have we completed this problem?

No, we need to find x. How do we find \boldsymbol{x} ?
Substitute $y=0.01$ into $\dagger \dagger$ (or \dagger):

$$
\begin{aligned}
150 x+(100 \times 0.01) & =10 \\
150 x+1 & =10 \\
150 x & =9 \\
x & =\frac{9}{150}=0.06
\end{aligned}
$$

Hence

$$
x=0.06 \text { and } y=0.01
$$

Example 30 continued

We can check our solution by substituting $x=0.06$ and $y=0.01$ into the original equations:

$$
\begin{aligned}
& 150 x+140 y=10.4 \\
& 150 x+100 y=10
\end{aligned}
$$

We get

$$
\begin{aligned}
(150 \times 0.06)+(140 \times 0.01) & =10.4 \\
(150 \times 0.06)+(100 \times 0.01) & =10
\end{aligned}
$$

The procedure outlined in the above example is a process of elimination. We eliminate one of the unknown variables and then solve for the remaining unknown variable.

Example 31 mechanics

The distance, s, travelled by an object is given by

$$
s=u t+\frac{1}{2} a t^{2}
$$

where a is constant acceleration, u is initial velocity and t is time.
An experiment produces the following results: After times of 3 s and 5 s the distances travelled by the object are 66 m and 160 m respectively.

Determine the values of u and a.

Solution

Substituting $t=5$ and $s=160$ into $u t+\frac{1}{2} a t^{2}=s$ gives

$$
5 u+\underbrace{\frac{1}{2}}_{=12.5} 5^{2} a=160
$$

Substituting $t=3$ and $s=66$ into $u t+\frac{1}{2} a t^{2}=s$ gives

$$
3 u+\underbrace{\frac{1}{2} 3^{2} a}_{=4.5}=66
$$

Rewriting these as

\dagger	$5 u+12.5 a=160$
\dagger	$3 u+4.5 a=66$

How can we get one equation with one unknown from \dagger and $\dagger \dagger$?
In the previous example we had the same number of x^{\prime} s so, when we subtracted, the x^{\prime} 's vanished. Can we remove the u's from \dagger and $\dagger \dagger$?

Yes, we need to make the numbers in front of u (the coefficients of u) to be the same. In \dagger we have $5 u$ and in $\dagger \dagger$ we have $3 u$.

Example 31 continued

If we multiply $5 u$ by 3 we get $15 u$ and if we multiply $3 u$ by 5 we also get $15 u$.
Thus multiplying \dagger by 3 gives

$$
\begin{array}{r}
(3 \times 5 u)+(3 \times 12.5 a)=3 \times 160 \\
15 u+37.5 a=480
\end{array}
$$

and multiplying $\dagger \dagger$ by 5 yields
**
$15 u+22.5 a=330$
$?$ Why?
Because when we subtract, * - ** , the u 's are eliminated:

$$
\text { * } \quad \begin{aligned}
15 u+37.5 a & =480 \\
\text { ** } \quad-(15 u+22.5 a & =330) \\
\hline 0+15 a & =150 \\
a & =\frac{150}{15} \\
a & =10
\end{aligned}
$$

Substituting $a=10$ into $3 u+4.5 a=66$ gives the linear equation

$$
\begin{aligned}
3 u+(4.5 \times 10) & =66 \\
3 u+45 & =66 \\
3 u & =66-45=21 \\
u & =\frac{21}{3}=7
\end{aligned}
$$

We have $a=10 \mathrm{~m} / \mathrm{s}^{2}$ and $u=7 \mathrm{~m} / \mathrm{s}$. You can check your result by plugging these numbers into the original equations.

Why do you think we remove the \boldsymbol{u} 's in the above example?
It is straightforward to find a common multiple of 3 and 5 , that is 15 , rather than find a common multiple of 4.5 and 12.5 . We say that the 5 of $5 u$ is the coefficient of u.

S U M MARY

For two simultaneous linear equations, eliminate one of the unknown variables and the result is a linear equation with one unknown. Solve for this unknown, substitute this value into one of the original equations and solve for the remaining unknown.

Exercise 1(h)

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

1 Solve the simultaneous equations:

$$
\begin{aligned}
& 8 x+5 y=13 \\
& x+5 y=6
\end{aligned}
$$

2 [mechanics] A lifting machine obeys the law

$$
E=a W+b
$$

where E is effort force, W is load and a, b are constants. An experiment produces the following results: Effort forces of 45.5 N and 53 N lift loads of 70 N and 120 N respectively. Find the values of the constants a and b.

3 [mechanics] The displacement, s, of a body is given by

$$
s=u t+\frac{1}{2} a t^{2}
$$

where t is time, u is initial velocity and a is acceleration. If at $t=2 \mathrm{~s}$ then $s=33 \mathrm{~m}$ and at $t=3 \mathrm{~s}$ then $s=64.5 \mathrm{~m}$, find the initial velocity (u) and acceleration (a).

4 Kirchhoff's law in a circuit we obtain

$$
\begin{aligned}
& 25\left(I_{1}-I_{2}\right)+56 I_{1}=2.225 \\
& 17 I_{2}-3\left(I_{1}-I_{2}\right)=1.31
\end{aligned}
$$

where I_{1} and I_{2} represent currents. Find I_{1} and I_{2}.

5
[materials] The length, ℓ, of an alloy varies with temperature t according to the law

$$
\ell=\ell_{0}(1+\alpha t)
$$

where ℓ_{0} is the original length of the alloy and α is the coefficient of linear expansion. An experiment produces the following results:

At $t=55^{\circ} \mathrm{C} \quad \ell=20.11 \mathrm{~m}$

At $t=120^{\circ} \mathrm{C} \quad \ell=20.24 \mathrm{~m}$
Determine ℓ_{0} and α. (The units
of α are $/{ }^{\circ} \mathrm{C}$.)
(Hint: Eliminate ℓ_{0} by division.)

6 品 [electrical principles] Resistors R_{1} and R_{2} are parallel in a circuit and satisfy

$$
\begin{aligned}
& \frac{1}{R_{1}}+\frac{1}{R_{2}}=1.2 \times 10^{-3} \\
& \frac{5}{R_{1}}+\frac{8}{R_{2}}=6.6 \times 10^{-3}
\end{aligned}
$$

Determine R_{1} and R_{2}.
(Hint: Work in terms of $1 / R_{1}$ and $1 / R_{2}$.)

7 [dimensional analysis] The force, F, of a jet is a function of density ρ, area A and velocity v. By assuming

$$
F=K \rho^{a} A^{b} v^{c}
$$

and dimensional homogeneity, find a, b and c and express F in terms of ρ, A and $v .(K, a, b$ and c are real numbers. Hint: Use the fact that the equations must be dimensionally homogeneous to write three simultaneous equations by using Table 1.)

8 required to drive an air screw depends on the diameter D, the number n of revolutions per second and density ρ. Assume

$$
P=K \rho^{a} n^{b} D^{c}
$$

where K, a, b and c are real numbers. Using dimensional analysis, or otherwise, determine a, b and c and write down the equation relating P, ρ, n and D. (Take the dimensions of n to be T^{-1}.)

Miscellaneous exercise 1

Solutions at end of book．Complete solutions available at www．palgrave．com／science／engineering／singh

1 ［aerodynamics］The pressure coefficient C is defined by

$$
C=\frac{\frac{1}{2} \rho\left(v^{2}-u^{2}\right)}{\frac{1}{2} \rho v^{2}}
$$

where u, v are velocities and ρ is density． Simplify this formula．

2 ［fluid mechanics］The pressures P_{1} and P_{2} at depths d_{1} and d_{2} respectively are given by

$$
\begin{aligned}
& P_{1}=\rho g\left(d-d_{1}\right) \\
& P_{2}=\rho g\left(d-d_{2}\right)
\end{aligned}
$$

where d is depth of the fluid，ρ is the density of fluid and g is acceleration due to gravity．Show that

$$
P_{2}-P_{1}=-\rho g\left(d_{2}-d_{1}\right)
$$

3 ［fluid mechanics］The head loss，h ， of a fluid in a pipe is given by

$$
h=\frac{v_{2}}{g}\left(v_{2}-v_{1}\right)-\frac{v_{2}^{2}-v_{1}^{2}}{2 g}
$$

（ g is acceleration due to gravity and v_{1}, v_{2} are velocities of fluid）．Show that

$$
h=\frac{\left(v_{1}-v_{2}\right)^{2}}{2 g}
$$

4 Evaluate $x^{2}+x+41$ for $x=0,1,2,3,4$ and 5 ．What do your results have in common？

5 ［electronics］The resonant frequency，f_{0} ，of a tuned circuit is given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

a Evaluate f_{0} for $L=5 \times 10^{-3}$ henry and $C=1 \times 10^{-6}$ farad．
b If $f_{0}=1000 \mathrm{~Hz}$ and $L=1 \times 10^{-3}$ henry then determine C ．

6 品 resistance，R ，of two resistors，R_{1} and R_{2} ， in parallel is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Show that

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

7 品品［electrical principles］Find the total resistance，R ，of a circuit consisting of three resistors，$R_{1}=10 \mathrm{k} \Omega$ ， $R_{2}=15 \mathrm{k} \Omega$ and $R_{3}=1.2 \mathrm{k} \Omega$ ， connected in parallel．（The total resistance，R ，is given by
$\left.\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}.\right)$
8 ［aerodynamics］An aircraft＇s drag，D ，at speed v in a medium of density ρ is given by

$$
D=\frac{1}{2} \rho v^{2} A C_{\mathrm{D}}+\frac{1}{2} \rho v^{2} A k C_{\mathrm{L}}^{2}
$$

where $C_{\mathrm{D}}, C_{\mathrm{L}}$ are drag coefficients，A is area and k is a constant．Transpose to make v the subject of the formula．
9 ［mechanics］The excess energy，E ， of an engine between the points of maximum speed，v_{1} ，and minimum speed，v_{2} ，is given by

$$
E=\frac{1}{2} I v_{1}^{2}-\frac{1}{2} I v_{2}^{2}
$$

where I is the moment of inertia．Make I the subject of the formula．
10 ［fluid mechanics］The flow of liquid from location 1 to location 2 can be described by Bernoulli＇s equation：

$$
\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+h_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+h_{2}
$$

Miscellaneous exercise 1 continued

where v is flow velocity, p is pressure, h is height, g is acceleration due to gravity and ρ is density. Make v_{1} the subject of the formula.

11 Solve the following equations:

$$
\begin{aligned}
& \text { a } 5 x-1=0 \quad \text { b } 3 x+2=8 \\
& \text { c }(x-1)(x+2)=0 \\
& \text { d }(3 x-1)(2 x+3)=0
\end{aligned}
$$

12 [mechanics] The vertical displacement, y, of a projectile in motion is given by

$$
y=u t-\frac{1}{2} g t^{2}
$$

where u is the initial velocity of the projectile. Find t for $y=10 \mathrm{~m}$ and $u=14 \mathrm{~m} / \mathrm{s}$. (Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.)

13 [thermodynamics] The exit velocity, u, of a fluid from a nozzle is given by

$$
u=\left\{\frac{2 \gamma P_{1} V_{1}}{\gamma-1}\left[1-\frac{P_{2} V_{2}}{P_{1} V_{1}}\right]\right\}^{\frac{1}{2}}
$$

where P_{1}, V_{1} represent the entrance pressure and specific volume respectively and P_{2}, V_{2} represent the exit pressure and specific volume respectively. γ is the ratio of specific heat capacities. Given that

$$
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}
$$

show that

$$
u^{2}=\frac{2 \gamma P_{1} V_{1}}{\gamma-1}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{1-1 / \gamma}\right]
$$

Find u (correct to 1 d.p.) given that

$$
\begin{aligned}
& \gamma=1.39, P_{1}=5.2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}, \\
& V_{1}=3.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg} \text { and } \\
& V_{2}=5 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

14 淢苞 [electrical principles] In an electrical circuit a resistor R satisfies

$$
R=1+\frac{3(9+R)}{12+R}
$$

Determine R.
15 Solve the following equations:
a $x^{2}-7 x+10=0$
b $x^{2}-1=0$
c $2 x^{2}-3 x+1=0$
d $15 x^{2}-x-2=0$
e $-100 x^{2}+400 x-300=0$
16
following coefficients occur in aerodynamics:

> Lift coefficient $\quad C_{\mathrm{L}}=\frac{L}{P A}$
> Drag coefficient $\quad C_{\mathrm{D}}=\frac{D}{P A}$ Moment coefficient $C_{\mathrm{M}}=\frac{M}{P A \ell}$
where L is the lift (in N), D is the drag (in N), P is the pressure, A is the area, M is the moment (in Nm) and l is the length. Show that $C_{\mathrm{L}}, C_{\mathrm{D}}$ and C_{M} are dimensionless.

17 [structures] The deflection, y, of a beam of length L is given by

$$
y=\frac{w x^{4}}{36 E I}-\frac{w L x^{3}}{8 E I}+\frac{w L^{4}}{36 E I}
$$

where w is the load per unit length, $E I$ is the flexural rigidity and x is the distance along the beam from one end. Factorize this expression.
18 [structures] The critical load, P, of a steel column can be obtained from

$$
L \sqrt{\frac{P}{E I}}=n \pi
$$

where L is the length, $E I$ is flexural rigidity and n is a positive whole number.

Miscellaneous exercise 1 continued

i Transpose to make P the subject of the formula.
ii Determine P (correct to $2 \mathrm{~d} . \mathrm{p}$.) for $n=1, E=0.2 \times 10^{12} \mathrm{~N} / \mathrm{m}^{2}$, $I=6.95 \times 10^{-6} \mathrm{~m}^{4}$ and $L=1.07 \mathrm{~m}$.

19 Solve the following equations:
a $x^{2}+3 x+1=0$
b $x^{2}+4 x+2=0$
c $5 x^{2}+2 x-1=0$
d $1-3 x-2 x^{2}=0$
20 " \mathbf{Y} " [vibrations] A constant, C, in a vibrational problem is defined as

$$
C=\frac{F_{0}}{k-m \alpha^{2}} \quad(\alpha \neq \sqrt{k / m})
$$

where F_{0} is the magnitude of the forcing function, k is the spring stiffness, m is the mass and α is the angular frequency.

If $\omega=\sqrt{\frac{k}{m}}$ and $r=\frac{\alpha}{\omega}$ then show that

$$
C=\frac{F_{0} / k}{1-r^{2}}
$$

21
[electrical principles] Applying Kirchhoff's law to a circuit gives

$$
\begin{gathered}
12\left(I_{1}+I_{2}\right)+67 I_{2}=5.794 \\
3 I_{1}-5\left(I_{1}-I_{2}\right)=0.306
\end{gathered}
$$

where I_{1} and I_{2} represent currents. Determine I_{1} and I_{2}.
[fluid mechanics] The acoustic velocity, v, is given by

$$
v=\left(\gamma k \rho^{\gamma-1}\right)^{1 / 2}
$$

Using $k \rho^{\gamma}=P$ and $\frac{P}{\rho}=R T$, show that

$$
v=\sqrt{\gamma R T}
$$

(k, R are constants, T is temperature, P is pressure, ρ is density and γ is the specific heat capacity ratio).

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

23
[fluid mechanics] The ratio of depths $\frac{d_{2}}{d_{1}}\left(\frac{\text { upstream depth }}{\text { downstream depth }}\right)$ of water flowing through a channel can be derived from

$$
\begin{aligned}
& d_{1}^{2}-d_{2}^{2}=\frac{2 Q}{g}\left(\frac{Q}{d_{2}}-\frac{Q}{d_{1}}\right) \\
& \left(d_{1} \neq 0, d_{2} \neq 0, d_{1} \neq d_{2}\right)
\end{aligned}
$$

where Q is the flow rate and g is acceleration due to gravity. Given that the Froude number, F, is defined as

$$
F=\frac{Q}{\sqrt{g d_{1}^{3}}}
$$

show that

$$
\frac{d_{2}}{d_{1}}=\frac{1}{2}\left[-1 \pm \sqrt{1+8 F^{2}}\right]
$$

24 Solve the following simultaneous equations:
a $2 x+3 y=5$
b $3 x+8 y=-18$
$x+2 y=3$
$5 x+5 y=25$
c $3 x+2 y=7$
$x+5 y=6$

25 (U" [vibrations] The natural frequency, ω, of a flywheel is given by

$$
\omega^{2}=\frac{J G}{I L}
$$

where I and J are moments of inertia, G is shear modulus of elasticity and L is length.

If mass m is placed at a distance r from the centre then the natural frequency, α, of the flywheel becomes

$$
\alpha^{2}=\frac{J G}{\left(I+2 m r^{2}\right) L}
$$

From these two formulae, show that

$$
I=\frac{2 m r^{2} \alpha^{2}}{\omega^{2}-\alpha^{2}}
$$

Miscellaneous exercise 1 continued

$26 \underline{U}^{1 /}$ [vibrations] When looking at vibrational problems, we often need to solve the quadratic equation

$$
\text { * } \quad m x^{2}+\zeta x+k=0
$$

where m is the mass, ζ is the damping coefficient and k is the spring constant. Show that

$$
x=\frac{\zeta}{2 m}\left(-1 \pm \sqrt{1-\frac{4 m k}{\zeta^{2}}}\right)
$$

For critical damping, we need $b^{2}-4 a c=0$ of the quadratic $a x^{2}+b x+c=0$. For what value of $\zeta(>0)$ in $\left(^{*}\right)$ does critical damping occur.

27 [thermodynamics] The specific heat at constant volume c_{v} and the specific heat at constant pressure c_{p} are related by

$$
c_{\mathrm{p}}-c_{\mathrm{v}}=R
$$

where R is the gas constant. If $k=\frac{c_{\mathrm{p}}}{c_{\mathrm{v}}}$, show that
a $c_{\mathrm{v}}=\frac{R}{k-1}$
b $c_{\mathrm{p}}=\frac{R k}{k-1}$
$28 \Psi^{\prime \prime}$ [vibrations] The four natural frequencies, $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}, of a system are given by the roots of the equation

$$
\omega^{4}-402 \omega^{2}+800=0
$$

Determine $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}.
$29 \mathbf{Y}^{\prime \prime}$ [vibrations] The natural frequencies, $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}, of two pendulums connected by a spring can be obtained from the equation

Solutions at end of book. Complete solutions available at www.palgrave.com/science/engineering/singh

$$
\omega^{4}-2\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \omega^{2}+\frac{g^{2}}{\ell^{2}}+\frac{2 k x^{2} g}{m \ell^{3}}=0
$$

where ℓ, x are lengths, m is mass, k is spring stiffness and g is acceleration due to gravity. Show that

$$
\begin{aligned}
& \omega_{1}=\sqrt{\frac{g}{\ell}}, \quad \omega_{2}=-\omega_{1} \\
& \omega_{3}=\sqrt{\frac{g}{\ell}+\frac{2 k x^{2}}{m \ell^{2}}} \text { and } \omega_{4}=-\omega_{3}
\end{aligned}
$$

30
[aerodynamics] Minimum drag occurs when the lift coefficient, L, satisfies

$$
k L^{2}=Z
$$

where Z is the zero lift coefficient and k is a constant. The velocity, v, of an aircraft satisfies

$$
w=\frac{1}{2} \rho v^{2} L A
$$

where w is weight, ρ is density and A is area. Show that

$$
v^{4}=\left(\frac{2 w}{\rho A}\right)^{2} \cdot \frac{k}{Z}
$$

31 [structures] The deflection, y, of a beam of length, L, is given by

$$
\begin{aligned}
& E I y=\frac{w(L-x) L}{6}-\frac{w}{6 L}(L-x)^{3} \\
& {[E I \neq 0, w \neq 0]}
\end{aligned}
$$

where w is the load per unit length, $E I$ is the flexural rigidity and x is the distance along the beam. Determine the value(s) of x for which the deflection is zero.

Index

Symbols $\frac{d y}{}$ $\frac{d x}{d x}$ 260
$\frac{\partial f}{\partial x}$

A

acceleration 330-2
addition of vectors 569
adjacent 168
adjoint of a matrix 528
algebra 53
subject of formula 54
transposition 54,56-64
algebraic
cube root 60,61
fraction 80-1
nth root 60
square root 60
algebraic applications
bending moment 88
Bernoulli's equation 71
current through resistor 55
deflection of beam 74, 79-80
distance of object 92
falling object 84
gas in cylinder 64, 68
impedance 62,77
kinetic energy 87
lift force 60
period of pendulum 71
power dissipated 57
second moment of area 61
speed of vehicle 56
velocity 57
algebraic fractions 80-1, 396-404
improper 402-4
amp 55
ampere (A) 33
amplitude-phase form 215
analytical techniques 426
angles
between vectors 589
important 486
angular motion 332-3
acceleration 333
displacement 332
velocity 332-3
anti-derivative 360, 362
arc 192
area
trapezium 106, 427
under a curve 375
under a normal curve 787
Argand, Jean Robert 475
Argand diagram 475
argument of a complex number 476-80
principal 476
arranging 756
Aryabhata 168
asymptote 121
atto (a) 33
augmented matrix 535
auxiliary equation 658
averages 734-5
axes 101

B
base of logarithm 238
beautiful formula 499
binomial 127
binomial application
length of cable 349
binomial distribution 762-7
formula 765
mean 774
standard deviation 775
binomial expansion 127-30, 346-7
binomial series $348-50$
boundary value problems 665-7
brackets, algebraic 73
BROIDMAS 40-2
BROIDMAS rule in algebra 53-4

C
calculator
combinations 759
complex numbers 479
fractions 17, 20, 23
indices 7
mean 734, 742
negative numbers 5
percentages 45
permutations 758
roots 10
$\sin 171$
sinh 247
standard deviation 738, 742
standard form 32
vectors in two dimensions 579
calculus 260
cancelling 17
Cartesian 101
CAST rule 182
Cayley, Arthur 508
chain rule 269-73
applications 274-9
change of base 238
characteristic equation 658
circumference of a circle 192
class boundaries 729
class width 729
classes 728
coefficient 102, 112
equating 402-3
cofactor matrix 526
cofactors 525
column vector 535
combinations 758-60
common logarithms 236-7
complementary function 672
completing the square $114-19$
complex conjugate 469-70
complex number applications
admittance 471
characteristic impedance 490
current in a circuit 483
impedance 472
primary and secondary currents 484
resultant force 480
transfer function 500
voltage 500
complex numbers 466
addition 466
arithmetic 464-72
division 470-1
division in polar form 482
imaginary part 466
indices 498
multiplication 468
multiplication in polar form 482
polar form 476-80
powers of j 467-8
real part 466
rectangular form 476
subtraction 466
complex plane 475
composite function 150-1
computer algebra system 123-5
constant 53
constant of integration 360
constant of proportionality 626
continuous random variable 777-8
cumulative distribution function 779
probability density function 778
properties 778
conversion of units 38-9
co-ordinate 101
cos 168
graph 178-9
cosecant (cosec) 174-5
cosh 247
graph 248
cosine rule 190
cotangent (cot) 174-5
cube root 9
cubed 7
curve sketching 311-18
D
data
continuous 727
discrete 727
de Moivre, Abraham 488
de Moivre's theorem 488-90
de Morgan, Augustus 751
de Morgan's laws 751
decibels 237
decimal number system 24
decimal place 25
decimal point 24
definite integrals 375-83
degree of polynomial 400
degrees to radians 193
denominator 16
dependent variable 101
derivative 258-64
cos function 272
exponential function 272
formulae $266,275-6$
gradient function 260
higher 289
not differentiable 264
second 286-9
\sin function 272
using MAPLE 262-3
Derive 123
Descartes, René 101
determinant of a 2×2 matrix 511
determinant of a 3×3 matrix 523
by cofactors 525
differential 368
differential coefficient 368
differential equation 602
family of solutions 604
general solution 603
order 602
particular solution 605
solving by direct integration 603-5
differential equation, linear 658
differentiation applications
acceleration of particle 286,288
bending moment 264
displacement 268
equation of tangent 337
kinematics 330-3
motion of projectile 296
simple harmonic motion 287
voltage across capacitor 278
voltage across inductor 282
differentiation of vectors 590
dimensional homogeneity 71
dimensionless 71
dimensions 70
discrete random variables 761-2
expected value 769-72
properties of expected value 772
variance 772-3
displacement 105
division 5
rules 4
domain 134
double angle formulae 205
dummy variable 364, 383

E

eigenvalue 549
eigenvalues and eigenvectors 548-55
characteristic equation 552
eigenvector 549
general eigenvector 551
elimination 92
equating coefficients 402-3
equation 55-6
of a line 102
linear 56, 100
root 55
solution 55
error
in Euler's method 635
in modified method 641
in Runge-Kutta method 648-9
estimation and accuracy 35-6
Euler, Leonard 228, 630
Euler number 73
Euler's formula 499
Euler's improved method 638-44
accuracy 641
formula 639
Heun's formula 639
pole in solution 644
using EXCEL 643
using MAPLE 642
Euler's numerical formula 632
Euler's numerical method 630-6
accuracy 635
using EXCEL 636
using MAPLE 634
even function 110, 165
exa (E) 33
expanding $(a+b)^{n} \quad 129$
expansion
of brackets 73-7
important 76-7
experimental law 241-5
determination of law using logs 242-5
explicit function 298-9
exponential applications
energy of inductor 231
population growth 227
pressure of gas 229
voltage in $R C$ circuit 230
exponential form of complex numbers 497-501
exponential function 227-32
properties 230

F

factorial 340
factorizing
important expressions 83-4
quadratic expressions 81-3
simple expressions 78-81
factors 13-15, 78-9
farad (F) 33
femto (f) 33
first order differential equation applications bending moment 604
current in $R L$ circuit 619
displacement 604
draining a tank 624
height of water 607
streamlines of flow 607
temperature at a particular time 626
voltage in $R C$ circuit 613
voltage in $R L$ circuit 617
FOIL 75-6
formulae 53
substitution 59
fourth root 9
fractions 16-23
addition and subtraction $18-20$
improper 16
inverting 22
mixed 16
multiplication and division 21-3
proper 16
splitting 397
top-heavy 16
frequency 727
frequency distribution 727-9
frequency polygon 732
Froude number 73
function 134
many-to-one 135
one-to-one 135
function applications
displacement of particle 136, 145,147
failure density function 152
steady-state error 161
transfer function 153
function of two or more variables 695
functions
combinations 151-2
composition 150-1
graphs 142-8
limits 156-61
plotting domain 142
plotting inverse 143-4
plotting range 142
fundamental dimensions 69
Fundamental Theorem of Algebra 491

G

Gauss, K.F. 534
Gaussian elimination 534-40
Gaussian elimination process 537
giga (G) 33
gradient 101-4
negative 104
graph applications
acceleration of particle 104
displacement of particle 123
extension of spring 102
failure density function 125
frequency and period 120
height of aircraft 118
magnification factor 124
power dissipated 111
streamlines 103,110
velocity profile 122
velocity-time graphs 105-7
graphical calculator 125
graphs 100
linear 100
plotting 123
quadratic 109-12
greater than 2-3
Greeks 168

H

half-angle formula 208
heat transfer 556-62
temperature at nodes 557
henry (H) 33
hertz (Hz) 34
histogram 730-1
homogeneous equations 657-61
hyperbolic applications
force on an electron 251
transmission line 251
hyperbolic functions 246
fundamental identity 250
properties 249-50
hypotenuse 168

I

identity 114
imaginary axis 475
imaginary part 466
imperial units 39
implicit differentiation 298-301
implicit function 298-9
indefinite integral 360-6
independent event 747
independent variable 101
index 7,66
indices 7-11
laws on complex numbers 498
indices applications
gas in a cylinder 224-5
infinite series 339, 348-9
inflexion point 314
inhomogeneous 670
initial value problem 662
integers 6
integrand 360
integrating factor 611-14
integration 360
area 375-8
computer algebra system 439-40
constant 360
definite 375-83
definite by substitution 410-13
formulae table 362-4
important integral 371-3
limits 376
numerical 426
order for by parts formula 390
partial fractions 405-9
by parts 388-95
by parts formula 388
by parts formula definite integral 392
by parts formula twice 394-5
substitution 368-73
suggested substitution 416-19
trigonometric substitution 412-19
using MAPLE 376-8
integration applications
average current 439
average power 415
deflection of beam 458
displacement 379
energy of inductor 391, 394
equation of catenary 370
force 432,449
hazard function 382
height of rocket 437
mechanics 452-4
moment of inertia 380
power in a circuit 381
probability of signal 440
RMS of current 447,448
specific enthalpy 380
thermodynamics 365
velocity 392,406
work in thermodynamics 456
intercept 102-4
intersection 746
inverse (multiplicative) 63
inverse cos 173
inverse functions 138-41
inverse matrix $(2 \times 2) \quad 512-15$
inverse matrix $(3 \times 3) \quad 528$
inverse sin 173
inverse tan 173
inverse trigonometric functions 173-4
irrational numbers 27-8
iterations 351, 630

J

joule (J) 34

K

kelvin (K) 34
kilo (k) 33
kilogram (kg) 33
kinematics 330-3
Kirchhoff's voltage law 616
Kutta, Martin 645

L

Lambert 247
Laplace's equation 702
laws of indices 66
less than 2-3
Liebniz 260
like terms 74
limits
algebra 160-1
limits of functions 156-61
linear equations $56,100,541-8$
inconsistent equations 542
properties 545
system 541
local maximum 308
local minimum 308
logarithmic applications
current gain 234
electronic device 243
gas in a cylinder 244
power gain 237
velocity of vehicle 236
logarithmic differentiation 302-4
logarithmic function 233-9
change of base 238
common logarithm 236-7
logarithmic laws 235
natural logarithm 233-6
tables 234
logarithmic graphs 242-5
lottery 759
lower class boundary 729
lowest common multiple (LCM) 12-15

M

Mach number 73
Maclaurin, Colin 341
Maclaurin series 339-45
of functions 344
limits of functions 344-5
using MAPLE 342-3
MAPLE 123-4
Mathcad 123

Matlab 123
matrices
addition 509
identity $(2 \times 2) \quad 512$
identity $(3 \times 3) \quad 530$
inverse $(2 \times 2) \quad 512-15$
inverse $(3 \times 3) \quad 528$
matrix multiplication 509-11
scalar multiplication 509
square 508
subtraction 509
matrix applications
acceleration in a pulley system 538
controllability matrix 519
currents in a circuit 516, 530, 539
heat transfer 556-62
natural vibrations 552
observability matrix 519
solving equations 516-19
system poles 520
using MAPLE 561-2
matrix multiplication 509-11
maximum 118,308
first derivative test 326
second derivative test 310
maximum and minimum applications
energy absorbed by a resistor 316
maximum value of current 313
maximum volume 320
minimum power dissipated 323
minimum surface area 321
sketch graphs 311-14
mean 734
of frequency distribution 740
median 735
mega (M) 33
metre (m) 33
micro (μ) 33
milli (m) 33
minimum 118, 308
first derivative test 327
second derivative test 310
minor 524
mode 735
modulus function 163-4
sketch 164
modulus of a complex number 476-80
multiple-angle formula 208
multiples 12-15
multiplication 5
rules 4
mutually exclusive events 750

N

nano (n) 33
Napier, John 233
natural logarithm 233-6
negative numbers $2-6,8$
Newton 260
newton (N) 34
Newton's law of cooling 626-7
Newton-Raphson 352
Newton-Raphson application
time taken for zero velocity 354
non-homogeneous equations 670-2
normal distribution 786-92
area 787
standard normal distribution 787
table 821
use of table 787, 792
normal distribution curve 786
normal equation $335-8$
gradient 335
not equal $(\neq) \quad 76$
numerator 16
numerical integration 426
experimental data 426
numerical methods $351,426,630$
Euler 632
fourth order Runge-Kutta 646
modified Euler 639
Newton-Raphson 352
Simpson 434
trapezium 428
numerical solution of equations 351-5
Newton-Raphson 352

o

odd function 165
ohm (Ω) 33
Ohm's law 616
opposite 168
optimization problems 320-4
engineering 323-4
maximizing 320
minimizing 320
partial differentiation 719-21
order of operations 40-2
ordinates 428, 434
origin 101

P

parameter 291
parametric differentiation 291-6 applications 296
parametric equations 291-2
plotting with MAPLE 292
partial derivatives 695-704
higher derivatives 699-700
maximum 716-19
minimum 716-19
mixed derivatives 700-4
notation 696
plotting with MAPLE 714-17
product rule 701
quotient rule 701
saddle point 716-19
stationary points 714-15
partial derivatives applications
coefficient of rigidity 710
head loss in a pipeline 709
ideal gas equation 698, 712
Laplace's equation 702
minimize surface area 719
power in a circuit 707
pressure of gas 697
resistance of wire 699
second moment of area 697
partial fractions 397-402
identity 398
improper 402-4
integration of 405-9
particular integrals 672-80
particular solutions
non-homogeneous equations 683-8
pascal (Pa) 34
Pascal, Blaise 128
Pascal's triangle 127-30
percentage error 46,430
percentages 43-6
converting to fractions 44
permutations 756-8
peta (P) 33
pico (p) 33
place sign 525
point of inflexion
general 314
horizontal 308, 315-18
Poisson, Simeon-Denis 774
Poisson distribution 774-5
formula 774
mean 775
variance 775
polar form of a complex number 476-80
polynomial 400
cubic 400
degree 400
linear 400
quadratic 400
quartic 400
positive numbers 2-6
power 7,66
prime 13
prime decomposition 13
prime factors 13-15
probability 745
and rule 747
least rule 752
not rule 747
or rule 750
probability applications
component failing 779
failure density function 778
failure distribution function 780
hazard function 781
mean time to failure 782
reliability engineering 778-80
reliability functions 780-4
probability density function 761
probability distribution 764
product rule 280-3
Pythagoras 169

Q

quadratic 81
quadratic equations 86-9
solving by factorizing $86-8$
solving by formula $88-9$
quotient rule 283-4

R

radians 193, 497
radians to degrees 194
radius of a circle 192
random variable 761
range 134
Raphson, Joseph 351
ratios 48-50
real axis 475
real numbers 6
real part 466
rectangular form of a complex
number 476
removing brackets 73-4
resultant force 480
Reynolds number 73
right-angled triangle 168
root mean square (RMS) 445-50
roots 8
properties of roots $10-11$
roots of a complex number 491-6
on a circle 493-5
rules of indices 66-8
Runge, Carle 645

Runge-Kutta, fourth order 645-50
accuracy 648-9
comparison graph 650
formula 646
using MAPLE 649

S

saddle point 716-19
scalar 568
scalar products 586-9
definition 587
formula 587
properties 587
secant (sec) 174-5
second (s) 33
second order differential equation 657
auxiliary equation 658
characteristic equation 658
general solution 658
particular homogeneous solutions 662-3
particular solution 662
standard form 661
trivial solution 659
second order differential equation applications
compression of buffer 683
critical load 666
current in a circuit 663, 676
current in RLC circuit 685
deflection of column 687
motion of spring-mass system 665
undamped spring-mass system 677
separable equation 605
separating variables 605-8
series 338-45
Maclaurin 339-45
SI units 32-5
significant figures 26
simple harmonic motion 287, 664
simplify 67
Simpson, Thomas 434
Simpson's rule 434-40
application 438
quadratic curves 435
simultaneous equations 90-3
simultaneous equations by matrices 516-19
$\sin 168$
sin graph 178-9
sine rule 187-9
ambiguous case 188-9
sinh 246
graph 248
sketching quadratics 117-19
slide rule 234
small changes 706-7
solution
infinite number 543
no solution 544
trivial 545
unique 541
spreadsheet 636
square root 8
properties 10-11
squared 7
squared deviations 736
squashed vertically 146
standard derivatives 275-6
standard deviation 736-40
of a frequency distribution 740
standard form 28-32
standard frequency 731
standard integrals 362-4
standard width 731
stationary points 308-11, 326-7
step size 632
streamlines 607
stretched vertically 146

T

$\tan 168$
graph 178-9
tangent equation 335-8 gradient 335
$\tanh 247$
graph 248
Taylor series 341
tera (T) 33
three-dimensional co-ordinate system 696
time constant 230
tolerance limits 706
Torricelli's law 623-6
total differential 711-12
transformation of graphs 144-8
transient term 620,627
transpose of a matrix 528
trapezium rule 426-32
trial function 672
adjusting trial function 679
table of trial functions 675
trigonometric applications
amplitude-phase form 215
crane 188
crank mechanism 190
current waveform 201
extension of spring 218
power in a circuit 210
sketch 217
time flight of projectile 210
trigonometric equations 181-6
general solution of $\cos (x)=R \quad 185$
general solution of $\sin (x)=R \quad 184$
general solution of $\tan (x)=R \quad 185$
general solutions 184-6
particular solutions 181-3
trigonometric functions 168-75
trigonometric identities $\quad 203-8$
fundamental identities 208
important 206
trigonometric ratios 168
trigonometry 168

U

union 746
units 70
upper class boundary 729

V

variables 53
variance 737
vector 568
addition 569
free vectors 569
magnitude 568
moment vector (torque) 596
resultant 569
scalar multiplication 571-2
subtraction 570
zero vector 571
vector applications
angle between vectors 589
moment vector 596-7
projectile 577
resultant force 572,577, 578, 582
resultant velocity 573
velocity and acceleration 591
work done 586
vector products 593-7
definition 593
determinant 595
properties 593
unit vectors 594
vectors in three dimensions $581-5$
addition 581
\mathbf{i}, \mathbf{j} and \mathbf{k} notation 581
magnitude 582
unit vectors 583-5
vectors in two dimensions 576-9
addition 577
\mathbf{i} and \mathbf{j} notation 576
magnitude 578
unit vectors 576
velocity 330-2
velocity-time graphs 105-7
Venn diagrams 746
volt (V) 33
voltage across capacitor 617
voltage across inductor 616
W
watt (W) 34
waves 195-201
amplitude 197-8
angular velocity 197
cosine wave 195
frequency 196-8
lags 200
leads 200
period 196-8
phase 198-201
sine wave 195
time displacement 198-201
Weber number 73

X
\dot{x} (time derivative) 260

