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Additional material

Chapter 2

SECTION G Applications of equations to electrical circuits

By the end of this section you will be able to:

� state Kirchhoff’s laws

� apply Kirchhoff’s laws to electrical circuits

� solve simultaneous equations resulting from Kirchhoff’s laws

� solve simultaneous equations using a computer algebra system

G1 Modelling electrical circuits

If you are undertaking an electrical-related discipline then you may have covered
Kirchhoff’s laws in an electrical principles module. However, if you have not covered
these laws then and give Kirchhoff’s current and voltage laws respectively.

Kirchhoff’s current law states

current entering a node � current leaving a node

For Fig. 43:

i1 � i2 � i3 � i4

2.7

2.82.7

i1

i2

i3

i4

Fig. 43

Obtain equations relating the currents i1, i2, i3, i4
and i5 of Fig. 44.

Solution
All the currents apart from i5 are entering the
node, therefore

i5 � i1 � i2 � i3 � i4

Example 20

Fig. 44
i1

i2
i3

i5

i4
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Kirchhoff’s voltage law states

For the circuit of Fig. 45 we have

Ohm’s law states that:

where i is the current flowing through the 
resistor R and v is the voltage across the resistor R
(Fig. 46).

v � iR2.9

v � v1 � v2 � v3

 in a loopapplied voltage � sum of the voltage drops across each component2.8
v1

v2

v3

vFig. 45

Fig. 46

Find the current i flowing through the circuit of
Fig. 47.

Solution
Remember is 8 kilo� and equals . By
applying Kirchhoff’s voltage law to the circuit
of Fig. 47 we have

9 � (voltage drop across )�
(voltage drop across )

[by applying Ohm’s law]

Therefore

The unit mA is milliamps, .10�3 A

  i � 0.5 � 10�3 � 0.5 mA

 i �
9

18 � 103 � 5 � 10�4

9 � (18 � 103)i

  � i(18k)

  � i(8k) � i(10k) 

10 k�

8 k�

2.8
8 � 103 �8 k�

Example 21

Fig. 47

i
v

R

9V

i 8kΩ

10kΩ
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Determine the currents i1 and i2 in
the circuit of Fig. 48.

Solution
What current is flowing from
A to B?

because i1 and i2 are going in the opposite directions. Consider the two loops. By applying
Kirchhoff’s voltage law to the first loop, we have

12 � (voltage drop across ) � (voltage drop across )

Applying to the second loop:

0 � (voltage drop across ) � (voltage drop across )

This gives

[Cancelling 103’s] i1 � 17i2††

 (1 � 103)i1 � (17 � 103)i2

 0 � (17 � 103)i2 � (1 � 103)i1

 � (17k)i2 � (1k)i1

� (5k � 11k � 1k)i2 � (1k)i1

0 � (5k)i2 � (11k)i2 � 1k(i2 � i1)

11 k�5 k�

2.8

12 � (4 � 103)i1 � (1 � 103)i2†

� (4k)i1 � (1k)i2

� (3k)i1 � (1k)i1 � (1k)i2

� (3k)i1 � (1k)(i1 � i2)

1 k�3 k�

2.8

i1 � i2

Example 22

Fig. 48

�

by 2.9

no voltage source in
the second loop

� (voltage drop across )1 k�

�

current from B to A

applied voltage � sum of voltage drops across each component in a loop
v � iR2.9

2.8

Consider the case where we have more than one loop in the circuit. A direction (normally
clockwise) for the current is chosen. The current is positive when in this direction
(clockwise) and negative when in the opposite direction (anticlockwise).

?
i1

A

B

5kΩ3kΩ

11kΩ1kΩ
12V

i2

�
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If we consider more than two loops in a circuit then we can set up the equations using
Kirchhoff’s and Ohm’s laws as above. However as for solving these equations, it is easier
to use modern technology since it eradicates the drudgery out of the calculations. In the
example below we have used a computer algebra system (MAPLE). It might be more
convenient to use a graphical calculator because of its portability.

We need to solve the simultaneous equations obtained:

We can substitute into :

Hence

How can we find i1?

Substitute into :

We have and .i2 � 0.18 mAi1 � 3.04 mA

 � 3.04 � 10�3 A

 i1 � 17 � (1.79 � 10�4)

i1 � 17i2i2 � 1.79 � 10�4

i2 �
12

67 � 103 � 1.79 � 10�4 A

 � (67 � 103)i2

 12 � (4 � 103)17i2 � (1 � 103)i2

†i1 � 17i2

 i1 � 17i2††

 12 � (4 � 103)i1 � (1 � 103)i2†

Example 22 continued

?

Obtain the values of the currents i1, i2, i3 and i4 in the circuit of Fig. 49.

Solution
Considering each loop separately.

Example 23

Fig. 49

i1

24V

6 kΩ 10kΩ5 kΩ

i2 i3 i4

1 kΩ 5kΩ 3kΩ 11kΩ

1 2 3 4
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Loop 1: Applying we have

24 � (voltage drop across  ) � (voltage drop across )

[by ]

Loop 2: Similarly

Loop 3: We have

Loop 4:

Combining these four equations gives

 �(3 � 103)i3 � (14 � 103)i4 � 0

 �(5 � 103)i2 � (18 � 103)i3 � (3 � 103)i4 � 0

 �(1 � 103)i1 � (12 � 103)i2 � (5 � 103)i3 � 0

 (6 � 103)i1 � (1 � 103)i2 � 24

 0 � �(3 � 103)i3 � (14 � 103)i4

 � (14k)i4 � (3k)i3

 � (11k)i4 � (3k)(i4 � i3)

0 � (voltage drop across 11 k�) � (voltage drop across 3 k�)

 0 � �(5 � 103)i2 � (18 � 103)i3 � (3 � 103)i4

 � (18k)i3 � (3k)i4 � (5k)i2

 � (10k)i3 � (3k)(i3 � i4) � (5k)(i3 � i2)

� (voltage drop across 5 k�)
0 � (voltage drop across 10 k�) � (voltage drop across 3 k�)

 0 � �(1 � 103)i1 � (12 � 103)i2 � (5 � 103)i3

 � (12k)i2 � (1k)i1 � (5k)i3

 � (6k)i2 � (5k)(i2 � i3) � (1k)(i2 � i1)

� (voltage drop across 1 k�)
0 � (voltage drop across 6 k�) � (voltage drop across 5 k�)

24 � (6 � 103)i1 � (1 � 103)i2

 � (6k)i1 � (1k)i2

2.9 � (5k)i1 � (1k)(i1 � i2)

1 k�5 k�

2.8

Example 23 continued

applied voltage � sum of voltage drops across each component in a loop 
v � iR2.9

2.8
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Solving these using MAPLE we obtain (*10^3 can also be replaced by e3 in MAPLE)

Rounding to 2 d.p. we have

i1 � 4.06 mA, i2 � 0.38 mA, i3 � 0.11 mA and i4 � 0.02 mA

�> evalf (solve ({eqn1, eqn2, eqn3, eqn4}));      {i1 � .004064145714, i3 � .0001108691348,                                

 �> eqn4:� � (3*10^3)*i[3] � (14*10^3)*i[4] � 0;

        eqn 4 : � � 3000 i3 � 14000 i4 � 0                              

�> eqn3:� � (5*10^3)*i[2] � (18*10^3)*i[3] � (3*10^3)*i[4] � 0;

       eqn 3 : � � 5000 i2 � 18000 i3 � 3000 i4 � 0                               

�> eqn2:� � (1*10^3)*i[1] � (12*10^3)*i[2] � (5*10^3)*i[3] � 0;

       eqn 2 : � � 1000 i1 � 12000 i2 � 5000 i3 � 0                               

 �> eqn1:�(6*10^3)*i[1] � (1*10^3)*i[2] � 24;

      eqn 1: � 6000 i1 � 1000 i2 � 24                               

Example 23 continued

�

�

�

�
i4 � .00002375767175, 

i2 � .0003848742823} 

SUMMARY

Kirchhoff’s current law:

current entering a node � current leaving a node

Kirchoff’s voltage law:

applied voltage � sum of voltage drops across each component in a loop

Ohm’s law:

v � iR2.9

2.8

2.7

�
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1 Ascertain an expression relating the
currents for the circuit of
Fig. 50.

i, i1, i2 and i3

2 Write an expression relating the currents
for the circuit of Fig. 51.i1, i2, i3, i4 and i5

3 Obtain four relationships, one for each
node A, B, C, D, between the currents

for the circuit of Fig. 52.

4 Find the current i flowing through the
circuit of Fig. 53.

5 Obtain a value for the current i of the
circuit of Fig. 54.

i1, i2, i3, i4 and i5

6 Obtain the values of the currents
for the circuit of Fig. 55.i1 and i2

7 Find the currents shown in
the circuit of Fig. 56.

i1, i2 and i3

Exercise 2(g) Solutions are given at the end of this additional material.
Complete solutions are in this website.

Fig. 51

Fig. 52

Fig. 55
Fig. 50

Fig. 53

8 Establish the values of the currents
for the circuit of Fig. 57.i1, i2 and i3

10 Determine the values of currents
for the circuit of Fig. 59.i1, i2 and i3

Fig. 56

Fig. 57

9 Find the values of the currents
for the circuit of Fig. 58.i1, i2, i3 and i4

Fig. 54

Fig. 58

Fig. 59

i

i1 i2 i3

v

i4

i5i1

i3

i2

i3

i5

10 mA 10 mA
A

B

C

Di2

i1

i4

i 1 kΩ

3kΩ12V

1kΩ 5kΩ

10kΩ16V

i

20V

1kΩ 6kΩ

10kΩ3kΩ
i1 i2

1 2

A

B

24V

5kΩ

3kΩ

1 2 3

1kΩ 5kΩ

6kΩ 10kΩ

i2i1 i3

15V

3kΩ

9kΩ 5kΩ

1 2 3

13kΩ
i1 i2 i3

36V

3kΩ

2kΩ

A B C

5kΩ 15kΩ

1kΩ 12kΩ

i2i1 i3
13kΩ

D
i4

9kΩ 3kΩ 10kΩ 27kΩ

50V

i1 i2 i3

1kΩ

5kΩ

11kΩ

12kΩ
13kΩ

A B
C
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G Step function

In electronics engineering, one of
the most important functions is the
step function, denoted , which is
defined as

is a function that depends on
time, t, and has a value of zero for

and one for . 
What does the graph of this
function look like?

The graph of is shown in Fig. 28.

The function jumps at and
has a value of 1 at this point and
for .

is sometimes called the ‘switch’ 
function (it switches on at ).

What do � and ° signify in the graph of Fig. 28?

The points � and ° at represent the fact that has a value of 1 at this point and
not zero.

There is also the delayed step function, , given by

This switches on at . The
graph has the shape shown in Fig. 29.

Notice that the graph jumps at to
a value of 1 for the delayed step function.

Step functions may have other values
besides 1. For example, the graph of

has the shape shown in Fig. 30.

The graph hops from zero to a value of b at a
and then stays at this value. It is defined by

bH(t � a) � �b
0

if t � a
if t � a

3.10

bH(t � a)

t � a

t � aH(t � a)

H(t � a) � �1
0

if t � a
if t � a

3.9

H(t � a)

H(t)t � 0

t � 0
H(t)

t 	 0

t � 0

H(t)

t � 0t � 0

H(t)

H(t) � �1
0

 if t � 0
 if t � 0

3.8

H(t)
Why is the step function denoted by ?
It was Oliver Heaviside (1850–1925) who
developed these step functions, hence . He was
born in Camden Town, London and at a young age
became deaf. However he was interested in
academic subjects but detested the rigour of
mathematics and chose to publish papers in
electromagnetism. In 1891 he was elected a Fellow
of the prestigious Royal Society. So the H in the step
function refers to Oliver Heaviside. Step function is
also known as ‘Heaviside’ function.

H(t)

H(t)

?

?

t

H t( )

0

1

Chapter 3

Fig. 28
Graph of H(t)

Fig. 29 Graph of H(t � a)

Fig. 30 Graph of bH(t � a)

H t a( – )

0 a
t

1

t
0 a

b

bH t a( – )
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The voltage, , applied to a circuit is given by

a b c

Sketch these functions on different axes.

Solution
a The graph of means the graph switches on at and has a value of 1.

More rigorously, we can use with which gives

and the graph has
the shape shown in 
Fig. 31.

b The graph 
switches on at and has
a value of 5.
Putting and 
into gives

(see Fig. 32).

c For , we can consider each part by using :

For and , so 

For and , so 

For and , so .v(t) � 5 � 5 � 05H(t � 2) � 55H(t � 1) � 5t � 2,

v(t) � 5 � 0 � 5

v(t) � ?5H(t � 2) � 01 
 t � 2, 5H(t � 1) � 5

v(t) � 0 � 0 � 0

v(t) � ?5H(t � 2) � 0t � 1, 5H(t � 1) � 0

5H(t � 1) � �5
0

if t � 1
if t � 1

   and  5H(t � 2) � �5
0

if t � 2
if t � 2

3.10v(t) � 5H(t � 1) � 5H(t � 2)

5H(t � 3) � �5
0

if t � 3
if t � 3

3.10
a � 3b � 5

t � 3
v(t) � 5H (t � 3)

H(t � 3) � �1
0

if t � 3
if t � 3

a � 33.9
t � 3v(t) � H(t � 3)

v(t) � 5H(t � 1) � 5H(t � 2)v(t) � 5H(t � 3)v(t) � H(t � 3)

v(t)

Example 25 electronics

3

1

t

H t( – 3)

0

Fig. 31 Graph
of H(t � 3)

Let’s try some examples. From now on we will not always plot graphs with � and ° and will
assume that the graph follows the definition given above in , and .3.103.93.8

t

5

3

5 ( –3)H t

0

Fig. 32 Graph
of 5H(t � 3)

?

?

bH(t � a) � �b
0

if t � a
if t � a

3.10
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Step functions can also take up other values besides constants. For example, the graph of
has the shape shown in Fig. 34.

The graph hops from zero to a value of at a and then traces the graph of for . It
is defined by

g(t)H(t � a) � �g(t)
0

if t � a
if t � a

3.11

t � ag(t)g(a)

g(t)H(t � a)

t
0 a

g t H t a( ) ( – )

g a( )

g t( )
Fig. 34 Graph of
g(t)H(t � a)

The input voltage, , to an amplifier is given by

Sketch this function.

Solution
For , putting and into

g(t)H(t � a) � �g(t)
0

if t � a
if t � a

3.11

g(t) � t 2a � 2v(t) � t2H(t � 2)

v(t) � t2H(t � 2)

v(t)

Example 26 electronics

Combining these three pieces we have the graph shown in Fig. 33.

Observe that the graph of is a pulse of value 5 between
1 and 2. Also at and at . A function of this format,

, will always be a pulse. For example, the general function
has a pulse of height 1 between and , and

zero elsewhere.
t � bt � af (t ) � H(t � a) � H(t � b)

5H(t � 1) � 5H(t � 2)
t � 2, v(t) � 0t � 1, v(t) � 5

v(t) � 5H(t � 1) � 5H(t � 2)

Example 25 continued

t

5

1 2

5 ( – 1) – 5 ( – 2)H t H t

v t( )

0

Fig. 33 Graph of
5H(t � 1) � 5H(t � 2)
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gives

How do we sketch this graph?

Well, switches on at 
and then it traces the
graph of from 2 onwards
(Fig. 35).

t2

t � 2v(t)

t2H(t � 2) � �t2

0
if t � 2
if t � 2

Example 26 continued

t
2

g (2)=2 =42

t H t2 ( –2)

t 2

0

Fig. 35 Graph
of t2H(t � 2)

SUMMARY
The basic step function is defined by

The step function is sometimes called the ‘switch’ function.

H(t) � �1
0

if t � 0
if t � 0

3.8

?

t
5 8

f t( )

1

t

f t( )

5

1

t

1

5

1 Sketch the following functions:

a

b

c

d

e

f

g

2 Write expressions for the functions, ,
of the following graphs:
a

f (t)

f (t ) � 5H(t � 2) � 6H(t � 3)

f (t ) � t 2[H(t � 2) � H(t � 3)]

f (t ) � H(t � 2) � H(t � 3)

f (t ) � (t 2 � 2t � 1)H(t � 1)

f (t ) � tH(t � 1)

f (t ) � 2H(t � 2)

f (t ) � H(t � 2)

b

c

Exercise 3(g) Solutions are given at the end of this additional material.
Complete solutions are in this website.

t
7

5

f t( )
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d

3 i Write the functions, and , for
the following graphs:

g(t)f (t)

ii Sketch the graph of

iii Sketch the graph of
f (t )� (t 3 � 15t 2 � 15t � 125) H(t � 5)

f (t ) � (t � 5)3 H(t � 5)

Exercise 3(g) Solutions are given at the end of this additional material.
Complete solutions are in this website.

0

f t( )

t

t3

( – 2)t 3

t

g t( )

2

Miscellaneous exercise 3 (extra)

19 Sketch the following functions:

a

b

c f(t) � (t2 � 4t � 4)H(t � 2)

f(t) � 5H(t � 3) � 5H(t � 4)

f(t) � H(t � 3)

Solutions are given at the end of this additional material.
Complete solutions are in this website.

t

f t( )

1

2

2

4
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F1 Other hyperbolic functions

We define hyperbolic functions – cosech, sech and coth – in a similar way to the definitions
of trigonometric functions cosec, sec and cot respectively:

Note the similarity with the analogous trigonometric definition:

We use a calculator to evaluate these functions.

cosec(x) �
1

sin(x)

coth(x) �
1

tanh(x)
�

cosh(x)
sinh(x)

 [sinh(x) ≠ 0]5.35

sech(x) �
1

cosh(x)
5.34

cosech(x) �
1

sinh(x)
 [sinh(x) ≠ 0]5.33

SECTION F Hyperbolic properties

By the end of this section you will be able to:
� evaluate other hyperbolic functions
� show hyperbolic identities
� understand inverse hyperbolic functions

Determine , and .

Solution
By we have

For , we evaluate on a calculator. PRESS

which should show 3.283853397.

By using a calculator we have .sech(5) � 0.013 and coth (5000) � 1

=x�1)0.3sinhyp(

[sinh(0.3)]�1cosech(0.3)

cosech(0.3) �
1

sinh(0.3)
 �  [sinh(0.3)]�1

5.33

coth(5000)sech(5)cosech(0.3)

Example 23

Chapter 5
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There is a technique to move from the trigonometric identity to the analogous hyperbolic
identity. We use Osborne’s rule which says that the trigonometric identity can be replaced
by the analogous hyperbolic identity but the sign of any direct (or implied) product of
two sinh’s must be changed.

Show that

Solution
We use the fundamental identity, 

Dividing both sides of this identity by gives

The last line follows by using 
cosh(x)
sinh(x)

� coth(x) and  
1

sinh(x)
� cosech(x).

 coth2(x) � 1 � cosech2(x)

 
cosh2(x)
sinh2(x)

� 1 �
1

sinh2(x)

 
cosh2(x)
sinh2(x)

�
sinh2(x)
sinh2(x)

�
1

sinh2(x)

sinh2(x)

cosh2(x) � sinh2(x) � 15.32

coth2(x) � 1 � cosech2(x)5.36

Example 24

F2 Hyperbolic identities

T
A

B
L

E
 1

3 Trigonometric Hyperbolic

1 � tanh2(A) � sech2(A)1 � tan2(A) � sec2(A)

coth2(A) � 1 � cosech2(A)cot2(A) � 1 � cosec2(A)

cosh2(A) � sinh2(A) � 1cos2(A) � sin2(A) � 1

We can use different variables after the hyperbolic function, it doesn’t need to be x. For
example .

Note the similarity in the identities of the hyperbolic and trigonometric functions in
Table 13.

sinh(A)
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�

direct product of two sinh’s

For example in trigonometry we have . Applying Osborne’s rule:

Remember that – so the positive sign in the middle
changes to a negative sign.

Similarly in trigonometry: . Using Osborne’s rule we have

because and – in both cases there is an implied

product of two sinh’s.

Multiplying both sides of by gives

This identity is also verified above in Example 24.

There are many other hyperbolic identities which can be shown by Osborne’s rule.
Try verifying some of the following identities:

cosh(A) � cosh(B) � 2sinh� A �  B
2 �sinh� A � B

2 �5.47

cosh(A) � cosh(B) � 2cosh� A �  B
2 �cosh� A � B

2 �5.46

sinh(A) � sinh(B) � 2cosh� A �  B
2 �sinh� A � B

2 �5.45

sinh(A) � sinh(B) � 2sinh� A �  B
2 �cosh� A � B

2 �5.44

tanh(A � B) �
tanh(A) � tanh(B)
1 � tanh(A)tanh(B)

5.43

cosh(A � B) � cosh(A)cosh(B) � sinh(A)sinh(B)5.42

sinh(A � B) � sinh(A)cosh(B) � cosh(A)sinh(B)5.41

tanh(2A) �
2tanh(A)

1 � tanh2(A)
5.40

sinh(2A) � 2sinh(A)cosh(A)5.39

 � 2cosh2(A) � 1 � 1 � 2sinh2(A)

cosh(2A) � cosh2(A) � sinh2(A) 5.38

1 � tanh2(A) � sech2(A)5.37

coth2(A) � 1 � cosech2(A)

�1*

cosech2(A) �
1

sinh2(A)
coth2(A) �

cosh2(A)
sinh2(A)

�coth2(A) �  1 � � cosech2(A)*

cot2(A) � 1 � cosec2(A)

(�)
(�)sinh2(A) � sinh(A) � sinh(A)

cosh2(A) � sinh2(A) � 1

cos2(A) � sin2(A) � 1
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For example, to show :

Notice that there is no direct or implied product of two sinh’s, thus the hyperbolic identity
is the same as the trigonometric identity:

By Osborne’s rule:

sinh(A � B) � sinh(A)cosh(B) � cosh(A)sinh(B)

sin(A � B) � sin(A)cos(B) � cos(A)sin(B)

sinh(A � B) � sinh(A)cosh(B) � cosh(A)sinh(B)

5.41

F3 Inverse hyperbolic functions

The inverse hyperbolic functions of and are denoted by
and respectively.

These functions are sometimes designated by and .

What does represent?

If then

(The following are correct to 3 d.p.) For example, therefore

What is , given that ?

Similarly if then

The domain of inverse cosh function is .

What is equal to, given that ?

From it follows that

The domain of the inverse tanh lies between and , that is .

To evaluate these inverse functions we can use a calculator.

�1 < x < 1�1�1

y � tanh�1(x)      (� 1 < x < 1)

tanh(y) � x

cosh�1(1) � 0

cosh(0) � 1cosh�1(1)

x � 1

y � cosh�1(x)      (x � 1)

cosh(y) � x

sinh�1(3.627) � 2

sinh(2) � 3.627sinh�1(3.627)

sinh�1(4.022) � 2.1

sinh(2.1) � 4.022

y � sinh�1(x)

sinh( y) � x

sinh�1

artanharsinh,  arcosh

tanh�1(x)sinh�1(x), cosh�1(x)
tanh(x)sinh(x),  cosh(x)

?

?

?
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Determine, correct to three d.p., , ,

and .

Solution
Using a calculator to evaluate , PRESS 
which should show 1.818446459.

So . Similarly we have:

, , , and for
, the calculator shows an error. Why?

The function is only valid for x between and is not a real number
for . (See Fig. 14c below.)x � 1 or x 
 �   1

�1 and �1tanh�1(x)

tanh�1(1)
tanh�1(0.25) � 0.255tanh�1(0) � 0cosh�1(3) � 1.763sinh�1(�3) � �1.818

sinh�1(3) � 1.818

=3sinSHIFThypsinh�1(3)

tanh�1(1)tanh�1(0), tanh�1(0.25)

cosh�1(3)sinh�1(3), sinh�1(�3)

Example 25

?

?

You can plot the inverse hyperbolic functions on a graphical calculator or a computer
algebra system (Fig. 14).

Do you notice why we cannot evaluate ?

There is a vertical asymptote at . Similarly we cannot evaluate .

As can be seen by the graph of Fig. 14b, the inverse function, , is only valid
for x greater than or equal to 1. If we try to evaluate for x values less than 1, the
calculator shows an error.

cosh�1(x)
cosh�1cosh

tanh�1(�1)x � 1

tanh�1(1)

–3

–2

–1

1

2

3

0

y

x
1–1

y x=tanh ( )–1

–3

–2

–1

1

2

3

0 8

y

x
1

y x=cosh ( )–1

–3

–2

–1

1

2

3

–8 –6 –4 –2 0 2 4 6 8

y

x

y x=sinh ( )–1

a b c

Fig. 14
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SUMMARY
The hyperbolic identities can be established from the analogous trigonometric identities
by using Osborne’s rule which says that the sign of the product of two sinh’s must be
changed.

Inverse hyperbolic functions are denoted by . We can evaluate
these functions on a calculator.

sinh�1, cosh�1 and tanh�1

?

The length, s, of a cable can be found from

where T is tension, w is load per unit length and x is horizontal distance. Show that

Solution
Multiplying both sides of the given equation, , by w gives

We need to obtain s from the Right-Hand Side. Divide both sides by T:

How do we remove ?

Take of both sides:

(because is the inverse function of ).

Transposing to make s the subject gives .s �
T
w

 sinh� wx
T �

sinhsinh�1

sinh� wx
T � � sinh�sinh�1� sw

T �� �
sw
T

sinh

sinh�1

wx
T

� sinh�1� sw
T �

wx � T sinh�1 � sw
T �

*

s �
T
w

 sinh� wx
T �

x �
T
w

 sinh�1� sw
T �*

Example 26 mechanics
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1 Evaluate and
.

2 Find 

.

3 Without using a calculator,
determine

4 Find x which satisfies

a

b

c

5 Without using Osborne’s rule, show
that

a

b

Use a computer algebra system or a
graphical calculator for question 6.

6 Plot on different axes the following
graphs for x between :

a

b

c

7 Show that

8 Show that

 � 1 � 2sinh2(x)

� 2cosh2(x) � 1 cosh2(x) � sinh2(x) 

� cosh2(x) � sinh2(x)cosh(2x)

y � cosech(x)

y � coth(x)

y � sech(x)

�10 and 10

2 sinh(x)cosh(x) � sinh(2x)

1 � tanh2(x) � sech2(x)

tanh(x) � 0.5

sinh(x) � π

cosh(x) � 1.7

cosh[cosh�1(π)] and tanh[tanh�1(0.236)] 

sinh[sinh�1(π)], sinh[sinh�1(5)],

and cosh�1(0)
tanh�1(0.5), cosh�1(π), cosh�1(1000)

sinh�1(π), sinh�1(�π), tanh�1(0), 

coth(10)
sech(2), cosech(2) 9 Without using Osborne’s rule,

show that

10 [mechanics] The length, s, of a 
cable with span L and sag h can be
determined by

Find the length of the cable which has
a span of and a sag of .

11 [mechanics] The length, s, of a 
cable can be evaluated from the
equation

where T represents horizontal
tension, w is load per unit length,

is an angle and x is horizontal
distance. Make s the subject of the
equation.

12 [electrical principles]
A transmission line of length L has an
impedance Z given by

where is the characteristic
impedance and is the propagation
coefficient. Show that

Z � Z0 cosech(�L)

�
Z0

Z �
2Z0e��L

(1 � e��L)(1 � e��L)

tan�1(
)

x �
T
w

 sinh�1� ws
T

� tan�1(
)�

60 m200 m

� � L
4h �sinh�1� 4h

L ��

s �
L
2

 ��1 � � 4h
L �

2

�
1/2

 � sinh(A) � sinh(B)

2sinh� A �  B
2 �cosh� A � B

2 �

Exercise 5(f) Solutions are given at the end of this additional material.
Complete solutions are in this website.
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Miscellaneous exercise 5 (extra)

16 Without using Osborne’s rule, show
that

17 [electrical principles] In a
symmetrical network we have the
following equations:

Show that

are impedences, � is the
propagation coefficient and L is the
length.)

For question 18 use a computer algebra
system (or a graphical calculator).

18 [mechanics] The length, s, of a 
cable with span L and sag h is
given by

a Plot the graph of s for 
with .

b Determine h, if and
.

19 [electrical principles]
A transmission line of length L has a
sending end voltage and sending
end current given by

where V is receiving end voltage, I is
receiving end current, Z is characteristic
impedance and � is propagation
coefficient. Show that

� ZIs sinh(�L)V � Vs cosh(�L)

�
Vs

Z
sinh(�L)I � Is cosh(�L)

�
V
Z

sinh(�L)Is � Icosh(�L)††

� IZ sinh(�L)Vs � V cosh(�L)†

Is

Vs

s � 240.87 m
L � 200 m

L � 200 m
�60 
 h 
 0

� � L
4h �sinh�1� 4h

L ��s �
L
2

 ��1 � � 4h
L �

2

�
1/2

(Z0, Z1 and Z2

Z2 � Z0[coth(�L) � cosec(�L)]

2Z1Z2

Z1 � Z2
� Z0 tanh(�L)**

Z1 � Z2 � 2Z0coth(�L)*

�
tanh(x) � tanh(y)

1 � tanh(x)  tanh(y)
tanh(x �  y)

Solutions are given at the end of this additional material.
Complete solutions are in this website.
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This section is a lot more difficult than previous sections. In this section we establish
and state a number of identities involving complex numbers.

F1 Identities

In this section we use the fundamental identities derived in the previous section.

Remember that 
 needs to be in radians.

 e�j
 � cos(
) � j   sin(
)10.26

 e  

j
 � cos(
) � j   sin(
)10.25

We define the complex trigonometric functions and as follows:

cos(z) �
e  

jz � e�jz

2
 [Replace 
 by z in Example 29]10.27

cos(z)sin(z)

SECTION F Functions of complex numbers

By the end of this section you will be able to:
� use some identities between trigonometric and hyperbolic functions
� establish some of these identities
� apply these to engineering examples

Show that

Solution
Expanding the Left-Hand Side:

[Cancelling 2’s] �
2cos(
)

2
� cos(
)

 
e  

j
 � e�j


2
�

cos(
) � jsin(
) � cos(
) � jsin(
)
2

e   

j
 � e�j


2
� cos(
) 

Example 29

� �by 10.25 by 10.26

Chapter 10
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Similarly

From these we can obtain

We define the complex hyperbolic functions as

tanh(z) �
sinh(z)
cosh(z)

 �
 e   

z � e�z

e   

z � e�z10.32

sinh(z) �
 e   

z � e�z

210.31

cosh(z) �
e   

z � e�z

210.30

tan(z) �
sin(z)
cos(z)

�
1
j �

e  

jz � e�jz

e  

jz � e�jz �10.29

sin(z) �
e  

jz � e�jz 
2j10.28

Show that

Solution
By

 � j� ez � e�z

2 � � j   sinh(z)

 � �j� e�z � ez

2 � �Because 
2
4

�
1
2 �

 �
�j2(e�z � ez)

4
 [Complex conjugate of j2 is �j2]

 �
e�z � e  

z

2j
 [Because j2 � �1]

 �
e  

j 2z � e�j2 z

2j

 sin(jz) �
e  

j( jz) � e�j(  jz)

2j

sin(z) � (e  

jz � e�jz)/  2j10.28

sin( jz) � j   sinh(z)

Example 30

sinh(z) � (ez � e�z)/210.31
a � jb
c � jd

�
(a � jb)(c � jd)

c2 � d2
10.13

{

by 10.13

�

by 10.31
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Similarly we have the following identities:

You are asked to show some of these identities in Exercise 10(f). Many of the properties of
real trigonometric functions also apply to complex trigonometric functions. We will not list
them here but just apply them in the appropriate case, as the following example shows.

tanh(  jz) � j  tan(z)10.38

sinh(  jz) � j  sin(z)10.37

cosh(  jz) � cos(z)10.36

tan(  jz) � j  tanh(z)10.35

sin(  jz) � j  sinh(z)10.34

cos(  jz) � cosh(z)10.33

Determine x and y given that

(x and y are real.)

Solution
We use

What is and equal to?

Substituting these values into gives

Equating the real and imaginary parts of gives

x � 9.97 and y � �1.20

x � jy � 9.97 � j1.20

 � 9.97 � j1.20

 cos(0.12 � j3) � (0.99 � 10.07) � (0.12 � j10.02)

*

sin(  j3) � jsinh(3) � j10.02 [Via calculator]

cos(  j3) � cosh(3) � 10.07 [Via calculator]

sin(  j3)cos(  j3)

 � 0.99cos( j3) � 0.12sin( j3)*

 cos(0.12 � j3) � cos(0.12)cos( j3) � sin(0.12)sin( j3)

cos(z1 � z2) � cos(z1)cos(z2) � sin(z1)sin(z2)4.39

x � jy � cos(0.12 � j3)

Example 31

{

by 10.33

{

by 10.34

?

sin( jz) � j sinh (z)10.34cos( jz) � cosh (z)10.33
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{

by 5.27

{

by 10.38

SUMMARY
There are many identities showing relationships between hyperbolic and trigonometric
functions. We can use these to evaluate trigonometric and hyperbolic functions of
complex numbers.

tanh(  jz) � jtan(z)10.38
sinh(x)
cosh(x)

� tanh(x)5.27

�Remember 
cosh(�L)
cosh(�L)

� 1�

[Substituting � � j�]

The next example might seem like a colossal jump from previous examples. Don’t be
put off by all the different symbols used in the example, we still use the same rules of
complex numbers.

A transmission line of length L with a characteristic impedance has an input
impedance given by

where propagation coefficient and load. Show that if then

Solution
Dividing the numerator and denominator of by :

 � z0� zL � jz0tan(�L)
z0 � jzLtan(�L) �

 � z0� zL � z0tanh( j�L)
z0 � zLtanh( j�L) �

 � z0� zL � z0tanh(�L)
z0 � zLtanh(�L) �

 zinput � z0� zL � z0
sinh(�L)
cosh(�L)

z0 � zL
sinh(�L)
cosh(�L)

�
cosh(�L)†

zinput � z0� zL � jz0tan(�L)
z0 � jzLtan(�L) �

� � j�zL �� �

zinput � z0� zL cosh(�L) � z0 sinh(�L)
z0 cosh(�L) � zL sinh(�L) �†

zinput

z0

Example 32 electrical principles
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1 Evaluate the following:

a

b

c

d

2 Evaluate the following:

a

b

c

3 Show that

4 Show that

5 By using and show that

6 Show that

7 Show that

8 Determine values of x and y for each of
the following (x and y are real):

a

b

c x � jy � tanh��j
π
4 �

x � jy � sin(�1 � jπ)

x � jy � cos(1 � jπ)

cosh( jz) � cos(z)

cos( jz) � cosh(z)

cos2(z) � sin2(z) � 1

10.2810.27

tan(z) �
1
j �

e  

jz � e�jz

e  

jz � e�jz �

sin(
 )�
e   

j  
 � e�j


2j
 

tanh(  jπ/3)

sinh(  j ln(3))

cosh(  jπ)

sin(  jπ  )

tan(  j  )

sin(  j  )

cos(  j  )
9 [electrical principles] A cable has

a voltage v at a distance x from the
sending end, given by

where is the load voltage, is
the characteristic impedance, is
the load impedance and is the
propagation coefficient. Show that if

then

10 [electrical principles] If a voltage v
at a distance x along a cable is given
by

show that

11 [electrical principles] The
impedance, , at a distance x along
a transmission line is given by

where is the load impedance, is
the characteristic impedance and 
is the propagation coefficient.
Show that

zx � z0� z0sinh(�x) � zLcosh(�x)
z0cosh(�x) � zLsinh(�x) �

�
z0zL

zx � z0
(z0 � zL  

)e�x � (zL � z0  

)e��x

(z0 � zL  

)e�x � (z0 � zL  

)e��x

zx

� jcosh(�x)sin(�x)

v
ILz0

� sinh(�x)cos(�x)

v � ILz0sinh[(� � j�)x]

v � VL�cos(�x) � j   

z0

zL
 sin(�x)�

� � j�

�
zL

z0VL

v � VL�cosh(�x) �
z0

zL
  sinh(�x)�

Exercise 10(f) Solutions are given at the end of this additional material.
Complete solutions are in this website.
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Miscellaneous exercise 10 (extra)

21 Evaluate the following:

a b

22 [electrical principles]
i The current, , in a transmission line

at a distance x from the receiving end
is given by

where is the load current, is the
characteristic impedance, is the load
impedance and is the propagation
coefficient. Show that

ii Evaluate for ,
, 

and .

23 [control engineering] The steady-
state output, , of a stable system is
given by

where C is a real constant, � � angular
frequency, t � time and � phase.
Show that

24 [control engineering] The following
transformation is used to derive an
equivalent digital filter from an
analogue filter:

where and T � sampling period.
Show that

F(s) � j tan� �T
2 �

s � ej�t

F(s) �
s � 1
s � 1

yss � Csin(� t � � )

�

yss � C�e  

j� ej� t�e�j� e�j� t

2j �

yss

IL � 250A
z0 � 500�(�10�) �zL � 250�10� �

�x � 0.01 � j0.1Ix

Ix � IL�sinh(�x) �
zL

z0
cosh(�x)�

�
zL

z0IL

Ix �
IL

2z0
  (e � x(z0 � zL) � (z0 � zL)e� � x

Ix

sin� π
2

� j�cos(ln(1) � j)

Solutions are given at the end of this additional material.
Complete solutions are in this website.
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Solutions

1 i � i1 � i2 � i3

2 i1 � i3� i2 � i4 � i5

3 i1 � i2 � 10 mA, i1 � i3 � i4, i3 � i5 � 10 mA and
i2 � i4 � i5

4 i � 3 mA

5 i � 1 mA

6 i1 � 5.67 mA, i2 � 0.90 mA

7 i1 � 4.06 mA, i2 � 0.38 mA, i3 � 0.11 mA

8 i1 � 2.69 mA, i2 � 1.92 mA, i3 � 0.53 mA

9 i1 � 5.90 mA, i2 � 2.24 mA, i3 � 1.17 mA,
i4 � 0.16 mA

10 i1 � 3.64 mA, i2 � 0.77 mA, i3 � 0.24 mA

2 a

b

c

d

3 i f(t) � t 3H (t), g   (t) � (t � 2)3 H   (t � 2)

2t �H (t � 1) � H (t � 2)�

tH (t � 1)

H (t � 5) � H (t � 8)

5H (t � 7)

1 0.266, 0.276, 1.000

2 1.862, �1.862, 0, 0.549, 1.812, 7.601,
no real solution

3 π, 5, π, 0.236

4 a 1.12 b 1.86 c 0.55

10 240.87 m

11

18 b �60 m

1 a 1.54 b j 1.17 c j 0.76 d j 11.55

2 a �1 b j 0.89 c j

8 a x � 6.26, y � �9.72 b x � �9.75,
y � �6.24 c x � 0, y � �1

21 a 1.543 b 1.543

22 ii 119.325 � j 67.618

√3

s �
T
w

 �sinh � wx
T � � tan�1(
)�

2(g)

3(g)

10(f)

ME5
(extra)

5(f)

ME10
(extra)


